C-activator treatment for distalization of maxillary molars in Class II anterior deep bite malocclusion

C-activator를 이용한 성장기 II급 부정교합환자의 구치부 원심이동 치험례

  • 김성훈 (가톨릭대학교 의과대학 교정학교실) ;
  • 정규림 (한국급속교정연구회) ;
  • 국윤아 (가톨릭대학교 의과대학 교정학교실)
  • Published : 2004.06.01

Abstract

A modified removable appliance for molar distalization called C-activator was used in a 10-year old male patient with a Class II anterior deep bite malocclusion with upper arch discrepancy. The treatment plan involved correcting the Class ll relationship, distalizing both upper first molars, and regaining space for the erupting canines. The C-activator, which was used for 6 months, consisted of a labial framework formed from .036-in stainless steel wire and an acrylic monobloc. Both the closed helices of the labial framework were compressed for reactivation during the C-activator treatment period. C-activator mechanics simultaneously achieved distalization of the upper first molars into their proper positions and repositioning of the mandible. After 21 months of treatment, the correct oberbite and overjet was obtained and contributed to an Improvement in facial balance. The treatment results were stable 6 months after debonding. Fabrication and placement of the new appliance and clinical procedures are detailed, and the treatment sequence and results of this case are presented as follows.

혼합 치열기의 교정치료 증례 중에서 경도의 총생을 가진 경우 상악 대구치를 원심 이동함으로서 양호한 치료의 결과를 얻는 경우가 많다 주로 악외 견인장치를 적용하여 원심이동을 시행하지만 환자의 협조도에 따라 구치의 원심이동이 결정되는 단점을 가지고 있다. 구강내 고정원 사용시 생길 수 있는 반작용을 최소화하기 위해 정에 의해 개발된 C-space regainer는 후방이동 시키고자 하는 치아를 제외한 거의 모든 치아들을 완벽하게 묶음으로서 효과적인 후방이동을 가능케 하는 장치이다. 후속영구치의 맹출 공간 부족으로 매복 치에 의한 인접치의 치근손상이 예상되는 성장기 II급 부정교합 환자에서 악기능 교정장치에 t-space regainer의 개념을 적용한 변형된 C-space regainer, 즉 C-activator가 사용되어 양호한 치료 결과를 얻었기에 이어 보고하는 바이다.

Keywords

References

  1. Klontz H. Tweed-Merrifield sequential directional force treatment. Semin Orthod 1996 : 2 : 254-67
  2. McNamara JA, Peterson JE, Alexander RG. Three-dimensional diagnosis and management of Class II malocclusion in the mixed dentition. Semin Orthod 1996: 2 : 114-3
  3. Spalding P. Treatment of Class II malocclusions In : Bishara SE ed. Textbook of Orthodontics. Philadelphia : W.B.Saunders Co, 2001 : 324-74
  4. Shroff B, Nanda R. Biomechanics of Class II correction In : Nanda Red. Biomechanics in clinical orthodontics. Philadelphia: W.B. Saunders Co, 1997 : 143-155
  5. Bell WH, Jacobs JD, Legan HL.Treatment of Class II deep bite by orthodontic and surgical means. Am J Orthod 1984 : 85 : 1-20
  6. Jakobsson SO, Paulin G. The influence of activator treatment on skeletal growth in angle class II : 1 cases. A roentgenocephalometric study. Europ J Orthod 1990 : 12: 174-84
  7. Ruf S, Baltromejus S, Pancherz H. Effective condylar growth and chin position changes in activator treatment : A cephalometric roentgenographic study. Angle Orthod 2001 : 71 : 4-11
  8. Ghosh J, Nanda RS. Evaluation of an intraoral maxillary molar distalization technique. Am J Orthod Dentofac Orthop 1996 : 110: 639-46
  9. Bussick TJ, McNamara JA. Dentalveoler and skeletal changes associated with the pendulum appliance. Am J Orthod Dentofac Orthop 2000 : 117 : 333-43
  10. Brickman CD, Sinha PK, Nanda RS. Evaluation of the Jones jig appliance for distal molar movement. Am J Orthod Dentofac Orthop 2000 : 118 : 526-34
  11. Chung KR, Park YG, Ko SJ. C-space regainer for molar distali-zation. J Clin Orthod 2000 : 34 : 32-9.
  12. Chung KR. Introduction of Horseshoe appliance In : Chung KR ed. Textbook of Orthodontic treatment using Horseshoe appliance. Seoul. Myungmoon, 2001 : 9-62
  13. Locatelli R, Bednar J, Dietz VS, Gianelly AA. Molar distalization with superelastic NiTi-wire. J Clin Orthod 1992 : 26 : 277-79
  14. Shafer WG, Hine MK, Levy BM. A textbook of oral pathology. In : Shafer WG ed. Philadelphia. WB Saunders, 1984
  15. Ericson S, Kurol J. Resorption of maxillary lateral incisors caused by ectopic eruption of the canines : a clinical and radiographic analysis of predisposing factors. Am J Orthod Dentofac Orthop 1988 : 94 : 503-13 https://doi.org/10.1016/0889-5406(88)90008-X
  16. Suri S, Utreja A, Rattan V. Orthodontic treatment of bilaterally impacted maxillary canines in an adult. Am J Orthod Dentofac Orthop 2002 : 121 : 429-37
  17. Bowman SJ. Author's response in Readers forum. Am J Orthod Dentofac Orthop 2002 : 121 : 9A-11A
  18. Kelleer JC, Stanford CM, Wightman JP. Draughn RA, Zaharias R. Characterizations of titanium implant surface. 1II J Biomed Mater Res 1994;28:649-54
  19. Ask M, Lausmaa J, Kasemo B. Preparation and surface spectroscopic characterization of oxide films on Ti6Al4V. Appl Surf Sci 1988;35:283-301 https://doi.org/10.1016/0169-4332(89)90013-5
  20. Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A, Hardouin P, Hildebrand HF, Iost A, Leroy JM. The relative influence of the topography and chemistry of TiA16V4 surfaces on osteoblastic cell behaviour. Biomaterials 2000; 21:1567-1577 https://doi.org/10.1016/S0142-9612(00)00042-9
  21. Morra M, Cassinelli C, Bruzzone G, Carpi A, Di Santi G, Giardino R, Fini M. Surface chemistry effects of topographic modification of titanium dental implant surface: 1. Surface analysis. Int J Oral Maxillofac Implants 2003;18(1):40-45
  22. Ong JL, Lucas LC. Auger electron spectroscopy and its use for the characterization of titanium and hydroxyapatite surfaces. Biomaterials 1998;19:455-464 https://doi.org/10.1016/S0142-9612(97)00224-X
  23. Lowry O, Rosenbrough N, Farr A, Randall R. Protein measurement with the folin phenol reagent. J Bioloc Chern 1951;193:265-75
  24. Walsh BJ, Thornton SC, Penny R, Breit S. Microplate reader based quantitation of collagens. Anal Biochem 1992;203:187-90 https://doi.org/10.1016/0003-2697(92)90301-M
  25. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 1992;7:302-10
  26. Michaels CM, Keller JC, Stanford CM, Solursh M. In vitro cell attachment of osteoblast-like cells to titanium. J Dent Res 1989;68:271-81
  27. Stanford CM, Keller JC, Solursh M. Bone cell expression on titanium surfaces is altered by sterilization treatments. J Dent Res 1994;73:1061-71 https://doi.org/10.1177/00220345940730050801
  28. Kilpad DV, Raikar GN, Liu J, Lemons JE, Vohra Y, Gregory [C. Effect of surface treatment on unalloyed titanium implants: Spectroscopic analyses. J Biomed Mater Res 1998;40:646-650 https://doi.org/10.1002/(SICI)1097-4636(19980615)40:4<646::AID-JBM17>3.0.CO;2-D
  29. Ellingen JE. Surface configurations of dental implants. Periodontology 2000 1998;17:36-46 https://doi.org/10.1111/j.1600-0757.1998.tb00121.x
  30. Hazan R, Brener R, Oron U. Bone growth to metal implants is regulated by their chemical properties. Biomaterials 1993;14:570-4 https://doi.org/10.1016/0142-9612(93)90172-X
  31. Larsson C, Thomsen P, Aronsson B-O, Rodahl M, Lausrnaa J, Kasemo B, EricsonLE. Bone response to surface-modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials 1994;15:1062-1074 https://doi.org/10.1016/0142-9612(94)90092-2
  32. Velten D, Biehl V, Aubertin F, Valeske B, Possart W, Breme J. Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by solgel coating techniques and their characterization. J Biomed Mater Res 2002;59:18-28 https://doi.org/10.1002/jbm.1212
  33. Lauer G, Wiedmann-Al-Ahmad M, Otten JE, Hubner U, Schmelzeisen R, Schilli W. The titanium surface texture effects adherence and growth of human gingival keratinocytes and human maxillar osteoblastlike cells in vitro. Biomaterials 2001; 22: 2799-2809 https://doi.org/10.1016/S0142-9612(01)00024-2
  34. Chang Y, Stanford CM, Wefel JS, Keller JC. Osteoblastic cell attachment to hydroxyapatite-coated implant surfaces in vitro. Int J Oral Maxillofac Implants 1999;14:239-247
  35. Lumbikanonda N, Sammons R. Bone cell attachment to dental implants of different surface characteristics. Int J Oral Maxillofac Implants 2001;16:627-636
  36. Rajaraman R, Rounds DE, Yen SPS, Rembaum A. A scanning electronic microscope study of cell adhesion and spreading in vitro. Exp Cell Res 1974;88:327-339 https://doi.org/10.1016/0014-4827(74)90248-1
  37. Schmidt C, Kaspar D, Sarkar MR, Claes LE, Ignatius AA. A scanning electronic microscopy study of human osteoblast morphology on five orthopedic metals. J Biomed Mater Res 2002;63:252-261 https://doi.org/10.1002/jbm.10185
  38. Hong MA, Jang KS, Kim CW, Kim YS. A study on osteoblast-like cell responses to surface-modified titanium. J Korean Academy of Prosthodontics(in press, SNU PhD Thesis)
  39. Montanaro L, Arciola CR, Campoccia D, Cervellati M. Invitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys. Biomaterials 2002;23:3651-3659 https://doi.org/10.1016/S0142-9612(02)00098-4
  40. Hott M, Noel B, Bernache-Assolant D, Rey C, Marie PJ. Proliferation and differentiation of human trabecular osteoblastic cells on hydroxyapatite. J Biomed Mater Res 1997;37(4):508-16 https://doi.org/10.1002/(SICI)1097-4636(19971215)37:4<508::AID-JBM9>3.0.CO;2-P
  41. Ferraz MP, Knowles JC, Olsen I, Monteiro FJ, Santos JD. Flow cytometry analysis of effects of glass on response of osteosarcoma cells to plasma-sprayed hydroxyapatite/ CaO-P(2)O(5) coatings. J Biomed Mater Res 1999;47(4):603-11 https://doi.org/10.1002/(SICI)1097-4636(19991215)47:4<603::AID-JBM18>3.0.CO;2-6
  42. Puleo DA, Holleran LA, Doremus RH, Bizios R. Osteoblast responses to orthopedic implant materials in vitro. J Biomed Mater Res 1991;25(6):711-23 https://doi.org/10.1002/jbm.820250603
  43. Bigerelle M, Anselme K, Noel B, Ruderman I, H hardouin P, lost A Improvement in the morphology of Ti-based surfaces: a new process to increase invitro human osteoblast response. Biomaterials 2002;23:1563-1577
  44. Lee WH, Byun CS, Kim SK, Kim JY, Hyun CY, Lee JG, Park JW. Mechanism of surface modification of a porous-coated Ti-6Al-4V implant fabricated by electrical resistance sintering. J Mater Sci 2001; 36:3573-3577 https://doi.org/10.1023/A:1017905305737