DOI QR코드

DOI QR Code

Nano-scale Proteomics Approach Using Two-dimensional Fibrin Zymography Combined with Fluorescent SYPRO Ruby Dye

  • Choi, Nack-Shick (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoo, Ki-Hyun (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon, Kab-Seog (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Maeng, Pil-Jae (Department of Microbiology, Chungnam National University) ;
  • Kim, Seung-Ho (Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2004.05.31

Abstract

In general, a SYPRO Ruby dye is well known as a sensitive fluorescence-based method for detecting proteins by one-or two-dimensional SDS-PAGE (1-DE or 2-DE). Based on the SYPRO Ruby dye system, the combined two-dimensional fibrin zymography (2-D FZ) with SYPRO Ruby staining was newly developed to identify the Bacillus sp. proteases. Namely, complex protein mixtures from Bacillus sp. DJ-4, which were screened from Doen-Jang (Korean traditional fermented food), showed activity on the zymogram gel. The gel spots on the SYPRO Ruby gel, which corresponded to the active spots showing on the 2-D FZ gel, were analyzed by a matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometric analysis. Five intracellular fibrinolytic enzymes of Bacillus sp. DJ-4 were detected through 2-D FZ. The gel spots on the SYPRO Ruby dye stained 2-D gel corresponding to 2-D FZ were then analyzed by MALID TOF MS. Three of the five gel spots proved to be quite similar to the ATP-dependent protease, extracellular neutral metalloprotease, and protease of Bacillus subtilis. Also, the extracellular proteases of Bacillus sp. DJ-4 employing this combined system were identified on three gels (e.g., casein, fibrin, and gelatin) and the proteolytic maps were established. This combined system of 2-D zymography and SYPRO Ruby dye should be useful for searching the specific protease from complex protein mixtures of many other sources (e.g., yeast and cancer cell lines).

Keywords

References

  1. Berggren, K., Chernokalskaya, E., Steinberg, T. H., Kemper, C., Lopez, M. F., Diwu, Z., Haugland, R. P. and Patton, W. F. (2000) Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfatepolyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21, 2509-2521. https://doi.org/10.1002/1522-2683(20000701)21:12<2509::AID-ELPS2509>3.0.CO;2-9
  2. Berggren, K., Steinberg, T. H., Lauber, W. M., Carroll, J. A., Lopez, M. F., Chernokalskaya, E., Zieske, L., Diwu, Z. and Haugland, R. P. (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal. Biochem. 276, 129-143. https://doi.org/10.1006/abio.1999.4364
  3. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-252. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Choi, N. S., Kim, B. Y., Lee, J. Y., Yoon, K. S., Han, K. Y. and Kim, S. H. (2002) Relationship between acrylamide concentration and enzymatic activity in an improved single fibrin zymogram gel system. J. Biochem. Mol. Biol. 35, 236-238. https://doi.org/10.5483/BMBRep.2002.35.2.236
  5. Choi, N. S. and Kim, S. H. (1999) Application of fibrin zymography for determining the optimum culture time for protease activity. Biotechnol. Techniq. 13, 899-901. https://doi.org/10.1023/A:1008942611827
  6. Choi, N. S. and Kim, S. H. (2000) Two fibrin zymography methods for analysis of lasminogen activators on gels. Anal. Biochem. 281, 236-238. https://doi.org/10.1006/abio.2000.4572
  7. Choi, N. S. and Kim, S. H. (2001) The effect of sodium chloride on the serine-type fibrinolytic enzymes and the thermostability of extracellular protease from Bacillus amyloliquefaciens DJ-4. J. Biochem. Mol. Biol. 34, 134-138.
  8. Choi, N. S., Lee, J. Y., Yoon, K. S., Han, K. Y. and Kim, S. H. (2001a) Identification of total extracellular fibrinase from Bacillus sp. DJ using one- or two-dimensional fibrin zymography for proteomic approach. J. Microbiol. Biotechnol. 11, 1111-1114.
  9. Choi, N. S., Yoon, K. S., Lee, J. Y., Han, K. Y. and Kim, S. H. (2001b) Comparison of three substrates (casein, fibrin and gelatin) in zymographic gel. J. Biochem. Mol. Biol. 34, 531-536.
  10. Hirushi, S. and Kadota, H. (1976) Intracellular protease of Bacillus subtilis. Agric. Biol. Chem. 40, 1047-1049. https://doi.org/10.1271/bbb1961.40.1047
  11. Kim, S. H. and Choi, N. S. (1999) Electrophoretic analysis of protease inhibitors in fibrin zymography. Anal. Biochem. 270, 179-181. https://doi.org/10.1006/abio.1999.4080
  12. Kim, S. H. and Choi, N. S. (2000) Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang. Biosci. Biotechnol. Biochem. 64, 1722-1725. https://doi.org/10.1271/bbb.64.1722
  13. Kim, S. H., Choi, N. S. and Lee, W. Y. (1998) Fibrin zymography: A direct analysis of fibrinolytic enzyme on gels. Anal. Biochem. 263, 115-116. https://doi.org/10.1006/abio.1998.2816
  14. Kim, W., Choi, K., Kim, Y., Park, H., Choi, J., Lee, Y., Oh, H., Kwon, I. and Lee, S. (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62, 2482-2488.
  15. Kleiner, D. E. and Stetler-Stevenson, W. G. (1994) Quantitative zymography: Detection of picogram quantities of gelatinases. Anal. Biochem. 218, 325-329. https://doi.org/10.1006/abio.1994.1186
  16. Lauber, W. M., Carroll, J. A., Dufield, D. R., Kiesel, J. R., Radabaugh, M. R. and Malone, J. P. (2001) Mass spectrometry compatibility of two-dimensional gel protein stains. Electrophoresis 22, 906-918. https://doi.org/10.1002/1522-2683()22:5<906::AID-ELPS906>3.0.CO;2-9
  17. Lopez, M. F., Berggren, K., Chernokalskaya, E., Lazarev, A., Robinson, M. and Patton, W. F. (2000) A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis 21, 3673-3683. https://doi.org/10.1002/1522-2683(200011)21:17<3673::AID-ELPS3673>3.0.CO;2-M
  18. Malone, J. P., Radabaugh, M. R., Leimgruber, R. M. and Gerstenecker, G. S. (2001) Practical aspects of fluorescent staining for proteomic applications. Electrophoresis 22, 919-932. https://doi.org/10.1002/1522-2683()22:5<919::AID-ELPS919>3.0.CO;2-U
  19. Raser, K. J., Posner, A. and Wang, K. K. W. (1995) Casein zymography: A method to study mu-calpain, m-calpain, and their inhibitor agents. Arch. Biochem. Biophys. 319, 211-216. https://doi.org/10.1006/abbi.1995.1284
  20. Robertson, E. F., Dannelly, K., Malloy, P. J. and Reeves, H. C. (1987) Rapid isoelectric focusing in a vertical polyacrylamide minigel system. Anal. Biochem. 167, 290-294. https://doi.org/10.1016/0003-2697(87)90166-7
  21. Steinberg, T. H., Chernokalskaya, E., Berggren, K., Lopez, M. F., Diwu, Z., Haugland, R. P. and Patton, W. F. (2000) Ultrasensitive fluorescence protein detection in isoelectric focusing gels using a ruthenium metal chelate stain. Electrophoresis 21, 486-496. https://doi.org/10.1002/(SICI)1522-2683(20000201)21:3<486::AID-ELPS486>3.0.CO;2-Q
  22. Strongin, A. Y., Izotova, L. S., Abramov, Z. T., Gorodetsky, D. I., Ermakova, L. H., Baratova, L. A., Belyanova, L. P. and Stepanov, V. M. (1978) Intracellular serine protease of Bacillus subtilis; sequence homology with extracellular subtilisins. J. Bacteriol. 133, 1401-1411.
  23. Sumi, H., Hamada, K., Nakanishi, K. and Hiratani, H. (1990) Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol. 84, 139-143. https://doi.org/10.1159/000205051
  24. Sumi, H., Hamada, H., Tsushima, H., Mihara, H. and Muraki, H. (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experentia 43, 1110-1111. https://doi.org/10.1007/BF01956052
  25. Valdes, I., Pitarch, A., Gil, C., Bermudez, A., Llorente, M., Nombela, C. and Mendez, E. (2000) Novel procedure for the identification of proteins by mass fingerprinting combining two-dimensional electrophoresis with fluorescent SYPRO Red staining. J. Mass Spectrom. 35, 672-682. https://doi.org/10.1002/1096-9888(200006)35:6<672::AID-JMS993>3.0.CO;2-K
  26. Yan, J. X., Harry, R. A., Spibey, C. and Dunn, M. J. (2000) Postelectrophoretic staining of proteins separated by twodimensional gel electrophoresis using SYPRO dye. Electrophoresis 21, 3657-3665. https://doi.org/10.1002/1522-2683(200011)21:17<3657::AID-ELPS3657>3.0.CO;2-2

Cited by

  1. Design and synthesis of a novel fluorescent protein probe for easy and rapid electrophoretic gel staining by using a commonly available UV-based fluorescent imaging system vol.34, pp.17, 2013, https://doi.org/10.1002/elps.201300089
  2. Design and synthesis of new fluorescent probe for rapid and highly sensitive detection of proteins via electrophoretic gel stain vol.32, pp.12, 2011, https://doi.org/10.1002/elps.201000691
  3. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM vol.34, pp.3, 2013, https://doi.org/10.1002/elps.201200434
  4. Rapid and easy protein staining for SDS-PAGE using an intramolecular charge transfer-based fluorescent reagent vol.27, pp.17, 2006, https://doi.org/10.1002/elps.200600101
  5. Analysis of pineapple [Ananas comosus (L.) Merr.] fruit proteinases by 2-D zymography and direct identification of the major zymographic spots by mass spectrometry vol.123, pp.4, 2010, https://doi.org/10.1016/j.foodchem.2010.06.016
  6. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: Follow up of cysteine protease isotypes in the course of post-harvest senescence vol.168, pp.13, 2011, https://doi.org/10.1016/j.jplph.2011.02.013
  7. A Newly Derived Protein From Bacillus subtilis natto With Both Antithrombotic and Fibrinolytic Effects vol.99, pp.3, 2005, https://doi.org/10.1254/jphs.FP0050408
  8. Design and synthesis of fluorescent probe for high-sensitivity protein detection based on merocyanine structure and application to rapid electrophoretic gel stain vol.173, 2012, https://doi.org/10.1016/j.snb.2012.06.023
  9. Development of fluorescent molecular probes for the detection of proteins and application to high-throughput protein analysis vol.58, pp.2, 2014, https://doi.org/10.2198/sbk.58.65
  10. Design and synthesis of a fluorescent probe based on the “on–off” behavior of the dansyl group through controlling quenching efficiency of the cyanopyranyl group by interaction with proteins vol.5, pp.9, 2013, https://doi.org/10.1039/c3ay26412b
  11. Proteomic characterization of Kunitz trypsin inhibitor variants, Tia and Tib, in soybean [Glycine max (L.) Merrill] vol.43, pp.1, 2012, https://doi.org/10.1007/s00726-011-1092-y
  12. Design and synthesis of ICT-based fluorescent probe for high-sensitivity protein detection and application to rapid protein staining for SDS-PAGE vol.8, pp.14, 2008, https://doi.org/10.1002/pmic.200800095
  13. Analysis of green kiwi fruit (Actinidia deliciosa cv. Hayward) proteinases by two-dimensional zymography and direct identification of zymographic spots by mass spectrometry vol.90, pp.14, 2010, https://doi.org/10.1002/jsfa.4100