DOI QR코드

DOI QR Code

Chemical Modification of Lysine Residues in Bacillus licheniformis α-Amylase: Conversion of an Endo- to an Exo-type Enzyme

  • Published : 2004.11.30

Abstract

The lysine residues of Bacillus licheniformis $\alpha$-amylase (BLA) were chemically modified using citraconic anhydride or succinic anhydride. Modification caused fundamental changes in the enzymes specificity, as indicated by a dramatic increase in maltosidase and a reduction in amylase activity. These changes in substrate specificity were found to coincide with a change in the cleavage pattern of the substrates and with a conversion of the native endo- form of the enzyme to a modified exo- form. Progressive increases in the productions of $\rho$-nitrophenol or glucose, when para nitrophenyl-maltoheptaoside or soluble starch, respectively, was used as substrate, were observed upon modification. The described changes were affected by the size of incorporated modified reagent: citraconic anhydride was more effective than succinic anhydride. Reasons for the observed changes are discussed and reasons for the effectivenesses of chemical modifications for tailoring enzyme specificities are suggested.

Keywords

References

  1. Alcalde, M., Plou, F. J., Andersen, C., Martin, M. T., Pedersen, S. and Ballesteros, A. (1999) Chemical modification of lysine side chains of cyclodextrin glycosyltransferase from Thermoanaerobacter causes a shift from cyclodextrin glycosyltransferase to -amylase specificity. FEBS Lett. 445, 333-337.
  2. Ammar, Y. B., Matsubara, T., Ito, K., Iizuka, M., Limpaseni, T., Pongsawasadi, P. and Minamura, N. (2002) New action pattern of a maltose-forming $\alpha$-amylase from Streptomyces sp. and its possible application in bakery. J. Biochem. Mol. Biol. 35, 568-575. https://doi.org/10.5483/BMBRep.2002.35.6.568
  3. Bernfeld, P. (1955) $\alpha$-and $\beta$-amylases; in Methods in Enzymology, Colowick, S. P. and Kaplan, N. (eds.), pp. 149-154, Academic Press, New York, USA.
  4. Brzozowski, A. M. and Davies, G. J. (1997) Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolution. Biochemistry 36, 10837-10845. https://doi.org/10.1021/bi970539i
  5. Davis, B. G. (2003) Chemical modification of biocatalysts. Curr. Opin. Biotechnol. 14, 379-386. https://doi.org/10.1016/S0958-1669(03)00098-3
  6. Dixon, H. B. F. and Perham, R. N. (1968) Reversible blocking of amino groups with citraconic anhydride. Biochem. J. 109, 312-314.
  7. Farrance, I. (1987) Plasma glucose methods, a review. Clin. Biochem. Rev. 8, 55.
  8. Fields, R. (1971) The measurement of amino groups in proteins and peptides. Biochem. J. 124, 581-590.
  9. Hagele, E. O., Schaich, E., Rauscher, E., Lehmann, P., Burk, H. and Wahlefeld, A. W. (1982) Mechanism of action of human pancreatic and salivary alpha-amylase on alpha-4-nitrophenyl maltoheptaoside substrate. Clin. Chem. 28, 2201-2205.
  10. Ishikawa, K. and Hirata, H. (1989) New substrate specificity of modified porcine pancreatic alpha-amylase. Arch. Biochem. Biophys. 272, 356-363. https://doi.org/10.1016/0003-9861(89)90229-4
  11. Kaiser, E. T., Lawrence, D. S. and Rokita, S. E. (1985) The chemical modification of enzymatic specificity. Annu. Rev. Biochem. 54, 565-595. https://doi.org/10.1146/annurev.bi.54.070185.003025
  12. Kandra, L., Gyémánt, G., Remenyik, J., Hovánszki, G. and Lipták, A. (2002) Action pattern and subsite mapping of Bacillus licheniformis alpha-amylase (BLA) with modified maltooligosaccharide substrates. FEBS Lett. 518, 79-82. https://doi.org/10.1016/S0014-5793(02)02649-2
  13. Khajeh, K., Naderi-Manesh, H., Ranjbar, B., Moosavi-Movahedi, A. A. and Nemat-Gorgani, M. (2001a) Chemical modification of lysine residues in Bacillus alpha-amylases: effect on activity and stability. Enzyme Microb. Technol. 28, 543-549. https://doi.org/10.1016/S0141-0229(01)00296-4
  14. Khajeh, K., Ranjbar, B., Naderi-Manesh, H., Ebrahim Habibi, A. and Nemat-Gorgani, M. (2001b) Chemical modification of bacterial alpha-amylases: changes in tertiary structures and the effect of additional calcium. Biochim Biophys Acta. 1548, 229-237. https://doi.org/10.1016/S0167-4838(01)00236-9
  15. Kita, Y., Sakaguchi, S., Nitta, Y. and Watanabe, T. (1982) Kinetic study on chemical modification of Taka-amylase A. II. Ethoxycarbonylation of histidine residues. J. Biochem. 92, 1499-1504.
  16. Kobayashi, M., Miura, M. and Ichishima, E. (1992) Modification of subsite Lys residue induced a large increase in maltosidase activity of Taka-amylase A. Biochem. Biophys. Res. Commun. 183, 321-326. https://doi.org/10.1016/0006-291X(92)91646-8
  17. MacGregor, E. A., Janeeek, S. and Svensson, B. (2001) Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim. Biophys. Acta 1546, 1-20. https://doi.org/10.1016/S0167-4838(00)00302-2
  18. Machius, M., Wiegand, G. and Huber, R. (1995) Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 ${\AA}$ resolution. J. Mol. Biol. 246, 545-559. https://doi.org/10.1006/jmbi.1994.0106
  19. Machius, M., Declerck, N., Huber, R. and Wiegand, G. (1998) Activation of Bacillus licheniformis alpha-amylase through a disorder-->order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure. 6, 281-292. https://doi.org/10.1016/S0969-2126(98)00032-X
  20. Matsui, I., Ishikawa, K., Miyairi,S., Fukui, S. and Honda, K. (1992) A mutant alpha-amylase with enhanced activity specific for short substrates. FEBS Lett. 310, 216-218. https://doi.org/10.1016/0014-5793(92)81335-J
  21. Nakatani, H. (1988) Selective inhibition of histidine-modified pancreatic alpha-amylase by proteinaceous inhibitor from Phaseolus vulgaris. Arch. Biochem. Biophys. 263, 364-368. https://doi.org/10.1016/0003-9861(88)90647-9
  22. Nakatani, H., Hamaguchi, K. and Ishikawa, K. (1994) Effect of modifying histidine residues on the action of Bacillus amyloliquefaciens and barley-malt alpha-amylases. Carbohydr. Res. 257, 155-161. https://doi.org/10.1016/0008-6215(94)84116-0
  23. Qi, D., Tann, C-M., Haring, D. and Distefano, M. D. (2001) Generation of new enzymes via covalent modification of existing proteins. Chem. Rev. 101, 3081-3111. https://doi.org/10.1021/cr000059o
  24. Qian, M., Spinelli, S., Drigez, H. and Payan, F. (1997) Structure of a pancreatic alpha-amylase bound to a substrate analogue at 2.03 ${\AA}$ resolution. Protein Sci. 6, 2285-2296.
  25. Watanabe, N., Kamei, S., Ohkubo, A., Yamanaka, M., Ohsawa, S., Makino, K. and Tokuda, K. (1986) Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer. Clin. Chem. 32, 1551-1554.
  26. Yamashita, H., Nakatani, H. and Tonomura, B. (1991) Substrateselective activation of histidine-modified porcine pancreatic alpha-amylase by chloride ion. J. Biochem. 110, 605-607.
  27. Yamashita, H., Nakatani, H. and Tonomura, B. (1993) Change of substrate specificity by chemical modification of lysine residues of porcine pancreatic alpha-amylase. Biochim. Biophys. Acta 1202, 129-134. https://doi.org/10.1016/0167-4838(93)90073-Z
  28. Yamashita, H., Nakatani, H. and Tonomura, B. (1995) Effect of a p-nitro group of phenyl-maltooligosaccharide substrate on the change of action specificity of lysine-modified porcine pancreatic alpha-amylase. Biochem. Mol. Biol. Int. 35, 79-85.

Cited by

  1. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity vol.18, pp.3, 2017, https://doi.org/10.3390/ijms18030520
  2. Xanthine derivatives as activators of alpha-amylase: Hypothesis on a link with the hyperglycemia induced by caffeine vol.7, pp.6, 2013, https://doi.org/10.1016/j.orcp.2012.07.007
  3. Chemical modification in the creation of novel biocatalysts vol.15, pp.2, 2011, https://doi.org/10.1016/j.cbpa.2010.12.002
  4. Introducing transglycosylation activity in Bacillus licheniformis α-amylase by replacement of His235 with Glu vol.451, pp.4, 2014, https://doi.org/10.1016/j.bbrc.2014.08.019
  5. Bioresponsive poly(amidoamine)s designed for intracellular protein delivery vol.9, pp.4, 2013, https://doi.org/10.1016/j.actbio.2012.12.005
  6. Electrostatic interactions play an essential role in the binding of oleic acid with α-lactalbumin in the HAMLET-like complex: A study using charge-specific chemical modifications vol.81, pp.1, 2013, https://doi.org/10.1002/prot.24141
  7. Assessment of the interacting mechanism between Candida rugosa lipases and hydroxyapatite and identification of the hydroxyapatite-binding sequence through proteomics and molecular modelling vol.6, pp.41, 2016, https://doi.org/10.1039/C6RA07521E
  8. Effect of modification of citraconic anhydrides on catalytic activity and thermostability of enzymes vol.91, pp.1, 2016, https://doi.org/10.1002/jctb.4556