# AN APPLICATION OF CATEGORY THEORY TO THE NONLINEAR WAVE EQUATION WITH JUMPING NONLINEARITY

TACK SUN JUNG AND Q-HEUNG CHOI

**Abstract.** We investigate the multiplicity of the periodic solutions of the nonlinear wave equation with jumping nonlinearity. By category theory we prove that the jumping problem has at least 2k + 1 solutions for the positive source term.

## 1. INTRODUCTION

We investigate the multiplicity of the periodic solutions of the nonlinear wave equation with Dirichlet boundary condition

$$u_{tt} - u_{xx} + bu^{+} - au^{-} = se_{1}^{+} \quad \text{in } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \tag{1.1}$$
$$u(\pm \frac{\pi}{2}, t) = 0,$$
$$u(x, t) = u(-x, t) = u(x, -t) = u(-x, t + \pi),$$

where  $u^+ = \max\{u, 0\}$ ,  $u^- = -\min\{u, 0\}$ ,  $s \neq 0$ ,  $s \in R$  and  $e_1^+$  is the eigenfunction corresponding to the positive eigenvalue  $\mu_1^+ = 1$  of the eigenvalue problem  $u_{tt} - u_{xx} = \mu u$  with Dirichlet boundary condition. We look for  $\pi$ - periodic solutions of (1.1). Choi and Jung proved in [3] that if -5 < a < -1, 3 < b < 7 and s > 0, then (1.1) has at least four solutions. In this paper we improved the results of [2] and [3] when the

Received August 30, 2004; Revised December 10, 2004.

2000 Mathematics Subject Classification of AMS: 35B10, 35L05, 35L20.

**Key words and phrases**: Category theory, jumping problem, Dirichlet boundary condition.

This work was supported by Inha University Research Grant.

jumping nonlinearity conditions are  $-\mu_i^- < a < -\mu_{i+1}^-, \dots, -\mu_{i+k}^- < b < -\mu_{i+k+1}^-$  and  $b \to -\mu_{i+k}^-$  or  $-\mu_{i+k+1}^+ < b < -\mu_{i+k}^+, \dots, -\mu_{i+1}^+ < a < -\mu_i^+, b \to -\mu_{i+k}^+$ , where  $\mu_k^-$  and  $\mu_k^+, k \geq 1$ , are the negative and positive eigenvalues of the problem  $u_{tt} - u_{xx} = \lambda u$  with Dirichlet boundary condition. We prove the following result:

**Theorem 1.1.** Let  $\mu_k^-$  be a negative eigenvalue such that  $\mu_k^- < \mu_1^-$ . Then there exists a number  $\delta > 0$  such that for any a and b with  $\mu_{i+k}^- - \delta < -b < \mu_{i+k}^- \le \mu_{i+1}^- < -a < \mu_i^-$ ,  $i \ge 1$ , and s > 0, then problem (1.1) has at least 2k + 1 solutions.

## 2. VARIATIONAL APPROACH

The eigenvalue problem (1.2) has infinitely many eigenvalues  $\lambda_{mn} = (2n+1)^2 - 4m^2$  (m, n = 0, 1, 2, ...) and corresponding normalized eigenfunctions  $\phi_{mn}(x,t)$  given by

$$\phi_{0n} = \frac{\sqrt{2}}{\pi} \cos(2n+1)x \quad \text{for } n \ge 0,$$

$$\phi_{mn} = \frac{2}{\pi} \cos 2mt \cdot \cos(2n+1)x \quad \text{for } m > 0, n \ge 0.$$

Let Q be the square  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$  and H' the Hilbert space defined by  $H' = \{u \in L^2(Q) | u \text{ is even in } x \text{ and } t\}$ . Then the set of functions  $\{\phi_{mn}\}$  is an orthonormal basis in H'. Let us denote an element u, in H', as  $u = \sum h_{mn}\phi_{mn}$  and we define a subspace H of H' as  $H = \{u \in H' \mid \sum |\lambda_{mn}|h_{mn}^2 < \infty\}$ . This is a complete normed space with a norm  $\|u\| = [\sum |\lambda_{mn}|h_{mn}^2]^{\frac{1}{2}}$ . Since the set  $\{\lambda_{mn}| m, n = 0, 1, 2, \ldots\}$  is unbounded from above and from below and has no finite accumulation point, it is convenient for the following to rearrange the eigenvalues  $\lambda_{mn}$  by increasing magnitude: From now on we denote by  $(\mu_i^-)_{i\geq 1}$  the sequence of the negative eigenvalues of (1.2), by  $(\mu_i^+)$  the sequence of

the positive ones, so that

$$\dots \le \mu_i^- \le \dots \le \mu_2^- \le \mu_1^- < 0 < \mu_1^+ \le \mu_2^+ \le \dots \le \mu_i^+ \le \dots$$

We note that each eigenvalue has a finite multiplicity and that  $\mu_i^- \to -\infty$  and  $\mu_i^+ \to +\infty$  as  $i \to \infty$ . Let  $\{e_i^-, e_i^+, i \ge 1\}$  be an orthonormal system of eigenfunctions associated with the eigenvalues  $\{\mu_i^-, \mu_i^+, i \ge 1\}$ . If  $\mu$  is any eigenvalue, we set

 $H^+(\mu) = \text{closure of span } \{\text{eigenfunctions with eigenvalue } \geq \mu\},$ 

 $H^-(\mu)=$  closure of span {eigenfunctions with eigenvalue  $\leq \mu$ }, and set  $H^+=H^+(0),\ H^-=H^-(0).$  We define the projections  $P^-:H\to H^-,\ P^+:H\to H^+.$  We define two linear operators  $R:H\to H^+,\ S:H\to H^-$  by

$$S(u) = \sum_{i=1}^{\infty} \frac{a_i^- e_i^-}{\sqrt{-\mu_i^-}}, \qquad R(u) = \sum_{i=1}^{\infty} \frac{a_i^+ e_i^+}{\sqrt{\mu_i^+}}$$

if  $u = \sum_{i=1}^{\infty} a_i^- e_i^- + \sum_{i=1}^{\infty} a_i^+ e_i^+$ . It is clear that S and R are compact and self adjoint on H. In this paper we study the nonlinear wave equation,  $s \in R$ ,

$$u_{tt} - u_{xx} + bu^{+} - au^{-} = se_{1}^{+}$$
 in  $H$ . (2.1)

Let us define the functional on H, corresponding to (2.1),  $s \in R$ ,

$$I_{a,b}(u) = \frac{1}{2} \|P^+ u\|^2 - \frac{1}{2} \|P^- u\|^2 + \frac{b}{2} \|(R+S)u^+\|^2 + \frac{a}{2} \|(R+S)\|^2 - s\langle e_1^+, u \rangle.$$
(2.2)

Then  $I_{a,b}(u)$  is well defined, continuous and Frèchet differentiable in H. Moreover  $I_{a,b} \in C^{1,1}(H,R)$  and the solutions of (2.1) coincide with the critical points of  $I_{a,b}(u)$ , that is,  $\nabla I_{a,b}(u) = 0$  if and only if (R+S)u is a weak solution of (1.1).

First we assume that  $s>0, \ \mu_{i+k+1}^-<-b<\mu_{i+k}^-\leq \mu_{i+1}^-<-a<\mu_i^-$  and  $-b\to\mu_{i+k}^-, \ k,\ i\geq 1$ . We will find the solutions of the form  $u=\bar u+z,$ 

so that z is a critical point for the functional  $J_{a,b}(w) = I_{a,b}(\bar{u} + w) - I_{a,b}(\bar{u})$ , where

$$J_{a,b}(z) = \frac{1}{2} \|P^+ z\|^2 - \frac{1}{2} \|P^- z\|^2 + \frac{b}{2} \|Az\|^2 - \frac{b}{2} \|[\bar{u} + Az]^-\|^2 + \frac{a}{2} \|[\bar{u} + Az]^-\|^2,$$
 where we set  $Az = (R + S)z$ . We know that

$$\nabla J_{a,b}(z) = P^+ z - P^- z + bA^2 z + bA[\bar{u} + Az]^- - aA[\bar{u} + Az]^-,$$

and 0 is the trivial solution of  $J_{a,b}$  with  $J_{a,b}(0) = 0$ .

#### 3. CRITICAL POINT THEORY ON THE MANIFOLD

Let H be a Hilbert space and M be the closure of an open subset of H such that M can be endowed with the structure of  $C^2$  manifold with boundary. Let  $f:W\to R$  be a  $C^{1,1}$  functional, where W is an open set containing M. For applying the usual topological methods of critical points theory we need a suitable notion of critical point for f on M. We recall the following notions: lower gradient of f on M,  $(P.S.)_c^*$  condition and the limit relative category (see [4]).

**Definition 3.1.** If  $u \in M$ , the lower gradient of f on M at u is defined by

$$\operatorname{grad}_{\bar{M}} f(u) = \begin{cases} \nabla f(u) & \text{if } u \in \operatorname{int}(M), \quad (3.1) \\ \nabla f(u) + [\langle \nabla f(u), \nu(u) \rangle]^{-} \nu(u) & \text{if } u \in \partial M, \end{cases}$$

where we denote by  $\nu(u)$  the unit normal vector to  $\partial M$  at the point u, pointing outwards.

We say that u is a lower critical point for f on M, if  $grad_{\bar{M}}f(u)=0$ .

**Definition 3.2.** Let  $c \in R$ . We say that f satisfies the  $(P.S.)_c$  condition on M if for any sequence  $(u_n)_n$  in M such that  $f(u_n) \to c$  and  $\operatorname{grad}_{\bar{M}} f(u_n) \to 0$  there exists a subsequence  $(u_{n_k})_k$  which converges to

a point u in M such that  $grad_{\bar{M}}f(u)=0$ .

Let Y be a closed subspace of M.

**Definition 3.3.** Let B be a closed subset of M with  $Y \subset B$ . We define the relative category  $cat_{M,Y}(B)$  of B in (M,Y), as the least integer h such that there exist h+1 closed subsets  $U_0, U_1, \ldots, U_h$  with the following properties:

$$B \subset U_0 \cup U_1 \cup \ldots \cup U_h$$
;

 $U_1, \ldots, U_h$  are contractible in M;

 $Y \subset U_0$  and there exists a continuous map  $F: U_0 \times [0,1] \to M$  such that

$$F(x,0) = x \qquad \forall x \in U_0,$$
  

$$F(x,t) \in Y \qquad \forall x \in Y, \forall t \in [0,1],$$
  

$$F(x,1) \in Y \qquad \forall x \in U_0.$$

If such an h does not exist, we say that  $cat_{M,Y}(B) = +\infty$ .

Now we recall a theorem which gives an estimate of the number of critical points of a functional, in terms of the relative category of its sublevels (see [5]).

**Theorem 3.1.** Let Y be a closed subset of M. For any integer i we set

$$c_i = \inf\{\sup f(B) | B \text{ is closed, } Y \subset B, cat_{M,Y}(B) \ge i\}.$$

Assume that  $(P.S.)_c$  holds for  $c = c_i$  and that  $\sup f(Y) < c_i < +\infty$ . Then  $c_i$  is a lower critical level for f, that is, there exists u in M such that  $f(u) = c_i$  and  $\operatorname{grad}_{\bar{M}} f(u) = 0$ . Moreover, if

$$c_i = c_{i+1} = \ldots = c_{i+k-1} = c$$

then

$$cat_M(\{u \in M | f(u) = c, grad_{\bar{M}}f(u) = 0\}) \ge k.$$

We need in the following a version of previous theorem suited to treat strongly indefinite functionals (see [1, 4]). In this case the notion of the  $(P.S.)_c^*$  condition and limit relative category turn out to be a very useful tool.

Let  $(H_n)_n$  be a sequence of closed finite dimensional subspace of H, defined by

$$H_n = \text{closure of span } < e_n^-, \dots, e_1^-, e_1^+, \dots, e_n^+ > .$$

**Definition 3.4.** Let  $c \in R$ . We say that f satisfy the  $(P.S.)_c^*$  condition with respect to  $(H_n)_n$ , if for any sequence  $(k_n)_n$ , with  $k_n \to +\infty$ , and for any sequence  $(u_n)_n$ , with  $u_n \in H_{k_n}$ ,  $f(u_n) \to c$ ,  $\nabla f_{k_n}(u_n) \to 0$ ,  $f_{k_n} = f|_{H_{k_n}}$ , there exists a subsequence of  $(u_n)_n$  which converges in H to a critical point of f.

**Lemma 3.1.** The functional  $J_{a,b}: H \to R$  satisfies the  $(P.S.)_c^*$  condition with respect to  $(H_n)_n$ , for any  $c \in R$ .

Let  $M_n = M \cap H_n$ , for any n, be the closure of an open subset of  $H_n$ , which has the structure of a  $C^2$  manifold with boundary in  $H_n$ . We assume that for any n there exists a retraction  $r_n : M \to M_n$ . For given  $B \subset H$ , we will write  $B_n = B \cap H_n$ .

**Definition 3.5.** Let  $c \in R$ . We say that f satisfies the  $(P.S.)_c^*$  condition with respect to  $(M_n)_n$ , on the manifold with boundary M, if for any sequence  $(k_n)_n$  in N and any sequence  $(u_n)_n$  in M such that  $k_n \to \infty$ ,  $u_n \in M_{k_n}$ ,  $\forall n$ ,  $f(u_n) \to c$ ,  $grad_{\bar{M}_{k_n}} f(u_n) \to 0$ , there exists a subsequence of  $(u_n)_n$  which converges to a point  $u \in M$  such that

 $grad_{\bar{M}}f(u) = 0.$ 

**Definition 3.6.** Let (X, Y) be a topological pair and  $X_n$  be a sequence of subsets of X. For any subset B of X we define the limit relative category of B in (X, Y), with respect to  $(X_n)_n$ , by

$$cat_{(X,Y)}^*(B) = \lim \sup_{n \to \infty} cat_{(X_n,Y_n)}(B_n).$$

Let Y be a fixed subset of M. We set

$$\mathcal{B}_{\mathbf{i}} = \{ \mathbf{B} \subset \mathbf{M} | \operatorname{cat}_{(\mathbf{M}, \mathbf{Y})}^*(\mathbf{B}) \ge \mathbf{i} \}, \ c_i = \inf_{B \in \mathcal{B}_{\mathbf{i}}} \sup_{x \in B} f(x).$$

We have the following multiplicity theorems, which was proved in [5].

## **Theorem 3.2.** Let $i \in N$ . Assume that

- (1)  $c_i < +\infty$ ,
- $(2) \sup_{x \in Y} f(x) < c_i,$
- (3) The  $(P.S.)_{c_i}^*$  condition with respect to  $(M_n)_n$  holds.

Then there exists a lower critical point x such that  $f(x) = c_i$ . If

$$c_i = c_{i+1} = \ldots = c_{i+k-1} = c,$$

then

$$cat_M(\{x\in M|f(x)=c,\ grad_{\bar{M}}f(x)=0\})\geq k.$$

We recall the following multiplicity result in [5], which will be used in the proofs of our main theorems.

**Theorem 3.3.** Let H be a Hilbert space and let  $H = X_1 \oplus X_2 \oplus X_3$ , where  $X_1, X_2, X_3$  are three closed subspaces of H with  $X_2$  of finite dimension. Moreover let  $(H_n)_n$  be a sequence of closed subspaces of H with finite dimension and such that for all n.

$$X_2 \subset H_n$$
,  $P_{X_i} \circ P_{H_n} = P_{H_n} \circ P_{X_i} (= P_{X_i \cap H_n}), i = 1, 2, 3.$ 

where, for a given subspace X of H,  $P_X$  is the orthogonal projection from H onto X. Set

$$C = \{ x \in X | \|P_{X_2} x\| \ge 1 \}$$

and let  $f: W \to R$  be a  $C^{1,1}$  function defined on a neighborhood W of C. Let  $1 < \rho < R$ ,  $R_1 > 0$ , we define

$$\Delta_{12} = \{x_1 + x_2 | x_1 \in X_1, x_2 \in X_2, ||x_1|| \le R_1, 1 < ||x_2|| < R\},\$$

$$\begin{split} \Sigma_{12} &= & \{x_1 + x_2 | \ x_1 \in X_1, x_2 \in X_2, \|x_1\| \leq R_1, \|x_2\| = 1\} \\ & \cup \{x_1 + x_2 | \ x_1 \in X_1, x_2 \in X_2, \|x_1\| \leq R_1, \|x_2\| = R\} \\ & \cup \{x_1 + x_2 | \ x_1 \in X_1, x_2 \in X_2, \|x_1\| = R_1, 1 \leq \|x_2\| \leq R\}, \\ S_{23} &= & \{x \in X_2 \oplus X_3 | \ \|x\| = \rho\}. \end{split}$$

Let

$$\alpha = \inf f(S_{23}), \qquad \beta = \sup f(\Delta_{12}).$$

Assume that

$$\sup f(\Sigma_{12}) < \inf f(S_{23}).$$

Assume that the  $(P.S.)_c^*$  condition holds for f on C, with respect to the sequence  $(C_n)_n$ ,  $C_n = C \cap H_n$ ,  $\forall c \in [\alpha, \beta]$ . Assume that  $f|_{X_1 \oplus X_3}$  has no critical points with  $\alpha \leq f(u) \leq \beta$ . Moreover we assume  $\beta < +\infty$ . Then there exist two lower critical points  $u_1$ ,  $u_2$  for f on Int C such that  $\inf f(S_{23}) \leq f(u_i) \leq \sup f(\Delta_{12})$ , i = 1, 2.

# 4. VARIATIONAL INEQUALITIES ON THE MANI-FOLD

Let's take integers,  $i,k\geq 1$  such that  $\mu_{i+k}^-\leq\ldots\leq\mu_{i+1}^-<\mu_i^-\leq\mu_1^-<0$ . First of all, we set

$$X_1^k = H^-(\mu_{i+k+1}^-), \qquad X_2^k = span\{e_{i+k}^-\}, \qquad X_3^k = H^+(\mu_{i+k-1}^-).$$

In this case we will show that if  $-b \to \mu_{i+k}^-$ ,  $\mu_{i+k+1}^- < -b < \mu_{i+k}^- \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ , then we have a linking type inequality relative to the decomposition  $H = X_1^k \oplus X_2^k \oplus X_3^k$ , so we get the existence of nontrivial two critical points for  $J_{a,b}$  in the subspace  $X_2^k$ . We need the following lemmas: Lemma 4.1, 4.2, 4.3, 4.4, 4.5 which can be proved by the same methods as in the results in [6].

**Lemma 4.1.** For any  $\mu$  with  $\mu_{i+k+1}^- < \mu < \mu_{i+k}^-$ ,  $k \ge 1$ , there exists a constant  $\Gamma > 0$  such that for all a and b with  $\mu \le -b \le \mu_{i+k}^- \ldots \le \mu_{i+1}^- < -a < \mu_i^-$ , if u is a critical point for  $J_{a,b}|_{X_1^k \oplus X_3^k}$  with  $0 \le J_{a,b}(u) \le \Gamma$ , then u = 0.

Let X be a linear subspace of H and E be a subset of H such that  $E \cap X = \emptyset$  and R > 0. Let

$$\Delta_R(E, X) = \{ w + \sigma e | w \in X, \sigma \ge 0, e \in E, ||w + \sigma e|| \le R \},$$

$$\Sigma_R(E, X) = \{ w + \sigma e | w \in X, \sigma \ge 0, e \in E, ||w + \sigma e|| = R \} \cup \{ w \in X | ||w|| \le R \}.$$

**Lemma 4.2.** There exist  $\delta_k > 0$ ,  $R_k > 0$ ,  $\rho_k > 0$ , and  $\bar{\rho} > 0$  with  $0 < \rho_k < R_k$  such that if  $\mu_{i+k}^- - \delta_k \le -b < \mu_{i+k}^- \le \dots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ , then

$$\sup_{v \in \Sigma_{R_k}(S_k(\bar{\rho}), X_1^k)} J_{a,b}(v) < \inf_{\substack{w \in X_2^k \oplus X_3^k \\ \|w\| = \rho_k}} J_{a,b}(w),$$

where  $S_k(\bar{\rho}) = \{ v \in X_2^k | ||v|| = \bar{\rho} \}.$ 

Let us define a functional  $\Psi: H \backslash (X_1^k \oplus X_3^k) \to H$  by

$$\Psi(u) = u - \frac{P_{X_2^k} u}{\|P_{X_2^k} u\|} = P_{X_1^k \oplus X_3^k} u + (1 - \frac{1}{\|P_{X_2^k} u\|}) P_{X_2^k} u.$$

We have

$$\Psi'(u)(v) = v - \frac{1}{\|P_{X_2^k}u\|} (P_{X_2^k}v - \langle \frac{P_{X_2^k}u}{\|P_{X_2^k}u\|}, v \rangle \frac{P_{X_2^k}u}{\|P_{X_2^k}u\|}).$$

Let

$$C = \{ u \in H | \|P_{X_2^k} u\| \ge 1 \}.$$

Then C is the smooth manifold with boundary. Let us define the function  $\widetilde{J}_{a,b}:C\to H$  by

$$\widetilde{J}_{a,b} = J_{a,b} \circ \Psi.$$

Then  $\widetilde{J}_{a,b} \in C^{1,1}_{loc}$ . We note that if  $\widetilde{u}$  is the critical point of  $\widetilde{J}_{a,b}$  and lies in the interior of C, then  $u = \Psi(\widetilde{u})$  is the critical point of  $J_{a,b}$ . We also note that

$$\|grad_{\tilde{C}}\widetilde{J}_{a,b}(\tilde{u})\| \ge \|P_{X_1^k \oplus X_3^k} \nabla J_{a,b}(\Psi(\tilde{u}))\|, \qquad \forall \tilde{u} \in \partial C.$$

**Lemma 4.3.**  $\widetilde{J}_{a,b}$  satisfies the  $(P.S.)^*_{\gamma}$  condition with respect to  $(C_n)_n$ ,  $C_n = C \cap H_n$  for any  $\gamma$  such that

$$\inf_{\tilde{w} \in \widetilde{S}_{23}(\rho_k)} \widetilde{J}_{a,b}(\tilde{w}) \le \gamma \le \sup_{\tilde{v} \in \widetilde{\Delta}_{R_k}} \widetilde{J}_{a,b}(\tilde{v}),$$

where

$$S_{23}(\rho_k) = \{ u \in X_2^k \oplus X_3^k | \|u\| = \rho_k \},\$$

$$\widetilde{S}_{23}(\rho_k) = \Psi^{-1}(S_{23}(\rho_k)) = \{u_2 + u_3 | u_2 \in X_2^k, u_3 \in X_3^k, ||u_3|| \le \rho_k, ||u_2|| = 1 + \sqrt{\rho_k^2 - ||u_3||^2} \},$$

$$\begin{split} \widetilde{\Delta}_{R_k} &= \Psi^{-1}(\Delta_{R_k}(S_k(\bar{\rho}), X_1^k)) \\ &= \{u = u_1 + \sigma(e) + \frac{1}{\sigma}e | \ u_1 \in X_1^k, e \in X_2^k, \|e\| = \bar{\rho}, \sigma \geq 0, \|u\| \leq R_k \}. \end{split}$$

**Proposition 4.1.** Let  $i, k \geq 1$  be such that  $\mu_{i+k+1}^- < \mu_{i+k}^- \leq \mu_{i+1}^-$ . Let  $\delta_k, \rho_k, \bar{\rho}, R_k$  be as in Lemma 4.2. Then for any a and b with

 $\mu_{i+k}^- - \delta_k \le -b < \mu_{i+k}^- \le \dots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ , the functional  $J_{a,b}$  has two critical points  $v_j^{(k)}$ , j=1,2 such that

$$0<\inf_{v\in H^+(\mu_{i+k}^-)\atop \|v\|=\rho_k}J_{a,b}(v)\leq J_{a,b}(v_j^{(k)})\leq \sup_{w\in \Delta_{R_k}(S_k(\bar{\rho}),H^-(\mu_{i+k+1}^-))}J_{a,b}(w).$$

Secondly, we set

$$X_1^{k-1} = H^-(\mu_{i+k}^-), \qquad X_2^{k-1} = span\{e_{i+k-1}^-\}, \qquad X_3^{k-1} = H^+(\mu_{i+k-2}^-).$$

In this case we define a functional  $\Psi: H\backslash (X_1^{k-1}\oplus X_3^{k-1})\to H$  and the manifold C on H with respect to the decomposition  $H=X_1^{k-1}\oplus X_2^{k-1}\oplus X_3^{k-1}$ . We also define  $\widetilde{J}_{a,b}:C\to H$  by  $\widetilde{J}_{a,b}=J_{a,b}\circ\Psi$ . Then  $\widetilde{J}_{a,b}\in C_{loc}^{1,1}$  and arguing as in the proof of Lemma 4.3 we can prove that for  $-b\to \mu_{i+k}^-$ ,  $-b<\mu_{i+k-1}^-$ ,  $\widetilde{J}_{a,b}$  satisfies the  $(P.S.)_c^*$  condition with respect to  $(C_n)_n$ ,  $C_n=C\cap H_n$ , for any c such that

$$\inf_{\tilde{w}\in \widetilde{S}_{23}(\rho_{k-1})}\widetilde{J}_{a,b}(\tilde{w}) \le c \le \sup_{\tilde{v}\in \widetilde{\Delta}_{R_{k-1}}}\widetilde{J}_{a,b}(\tilde{v}),$$

where  $S_{23}(\rho_{k-1}) = \{u \in X_2^{k-1} \oplus X_3^{k-1} | ||u|| = \rho_{k-1}\}$  and  $\widetilde{S}_{23}(\rho_{k-1}) = \Psi^{-1}(S_{23}(\rho_{k-1})), \widetilde{\Delta}_{R_{k-1}} = \Psi^{-1}(\Delta_{R_{k-1}}(S_{k-1}(\rho_{k-1}), X_1^{k-1})).$ 

**Lemma 4.4.** Assume that  $\mu_{i+k}^- \le -b \le \mu_{i+k-1}^- < -a$  and u be a critical point for  $J_{a,b}|_{X_1^{k-1} \oplus X_3^{k-1}} : X_1^{k-1} \oplus X_3^{k-1} \to R$ . Then  $J_{a,b}(u) = 0$ .

Assume that  $\mu_{i+k}^- \leq -b \leq \mu_{i+k-1}^- < -a$  and let u be a critical point of  $J_{a,b}|_{X_1^{k-1} \oplus X_3^{k-1}} : X_1^{k-1} \oplus X_3^{k-1} \to R$ . Then, if  $\mu_{i+k}^- < -b < -a$ , we have u=0, otherwise, if  $\mu_{i+k}^- = -b$ , u lies in the eigenspace associated with the eigenvalue  $\mu_{i+k}^-$  and  $\bar{u} + Su \geq 0$ .

**Lemma 4.5.** Let  $\alpha$  and  $\beta$  be such that  $0 < \alpha < \beta$ . Then there exists  $\delta' > 0$  such that for any a and b with  $\mu_{i+k}^- - \delta' \le -b \le \mu_{i+k-1}^- < -\mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ , the functional  $J_{a,b}|_{X_1^{k-1} \oplus X_3^{k-1}}$  has no critical

points  $u \in X_1^{k-1} \oplus X_3^{k-1}$  with  $\alpha \leq J_{a,b}(u) \leq \beta$ .

**Lemma 4.6.** There exists a real number  $\delta_{k-1} > 0$ ,  $R_{k-1}$ ,  $\rho_{k-1}$ ,  $\bar{\rho} > 0$  with  $0 < \rho_{k-1} < R_{k-1}$  such that if  $\mu_{i+k}^- - \delta_{k-1} \le -b \le \mu_{i+k-1}^- \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ , then we have

$$\sup_{v \in \Sigma_{R_{k-1}}(S_{k-1,k}(\bar{\rho}),X_1^k)} J_{a,b}(v) < \inf_{w \in H^+(\mu_{i+k-1}^-) \atop \|w\| = \rho_{k-1}} J_{a,b}(w),$$

where  $S_{k-1,k}(\bar{\rho}) = \{ v \in X_2^{k-1} \oplus X_2^k | \|v\| = \bar{\rho} \}.$ 

**Proof.** We choose  $\rho'$  such that, if  $e \in S_{k-1}(\rho')$ , then  $Se \leq 0$  in  $\Omega$ . First we will prove that there exist  $\rho_{k-1}$  and  $\delta_{k-1}$  such that if  $\mu_{i+k}^- - \delta_{k-1} \leq -b \leq \mu_{i+k-1}^- \leq \mu_{i+1}^- < -a < \mu_i^- \leq \mu_1^-$ ,

$$\sup_{v \in X_1^{k-1}} J_{a,b}(v) < \inf_{\substack{w \in X_2^{k-1} \oplus X_3^{k-1} \\ \|w\| = \rho_{k-1}}} J_{a,b}(w).$$

Let  $w \in H^+(\mu_{i+k-1}^-) = X_2^{k-1} \oplus X_3^{k-1}$ . Then we can choose  $\bar{\rho} > 0$  such that if  $||w|| \leq \bar{\rho}$ , then  $\bar{u} + Sw > 0$ , where  $Sw \in [e_{i+k-1}^-, \dots, e_1^-]$ . Choose  $\rho_{k-1} > 0$  with  $\rho_{k-1} < \bar{\rho}$ . Then we have, for  $u \in H^+(\mu_{i+k-1}^-)$  with  $||u|| \leq \bar{\rho}$ ,

$$J_{a,b}(u) \ge \frac{1}{2} min\{1, b, \frac{b}{|\mu_{i+k-1}|} - 1\} ||u||^2 > 0.$$

Now we will show that for any a and b with  $\mu_{i+k}^- \leq -b \leq \mu_{i+k-1}^- \leq \mu_{i+1}^- < -a < \mu_i^- \leq \mu_1^-, \sup_{u \in X_1^{k-1}} J_{a,b}(u) < 0$ . Let  $u \in H^-(\mu_{i+k}^-) = X_1^{k-1}$ . Then  $P^+u = Ru = 0$ . Thus we have

$$J_{a,b}(u) \le \frac{1}{2} \left( \frac{b}{|\mu_{i+k}^-|} - 1 \right) \|P^- u\|^2 < 0.$$

Next, we will show that there exist  $R_{k-1} > 0$ ,  $\delta_{k-1} > 0$  and  $\bar{\rho} > 0$  such that for any a and b with  $\mu_{i+k}^- - \delta_{k-1} \le -b \le \mu_{i+k-1}^- \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ ,

$$\sup_{w \in \Sigma_{R_{k-1}}(S_{k-1,k}(\bar{\rho}),X_1^k)} J_{a,b}(w) < 0,$$

where  $S_{k-1,k}(\bar{\rho}) = \{ v \in X_2^{k-1} \oplus X_2^k | ||v|| = \bar{\rho} \}.$ 

We choose  $\bar{\rho}$  such that, if  $v + z \in S_{k-1,k}(\bar{\rho})$ , then  $Sv + Sz \leq 0$  in Q. Now, we can find  $(b_n)_n$  and  $(a_n)_n$  with  $-b_n \to \mu_{i+k}^-$ ,  $\mu_{i+k+1}^- < -b_n < \mu_{i+k-1}^- \leq \mu_{i+1}^- < -a < \mu_i^- \leq \mu_1^-$ ,  $||u_n|| \to +\infty$ ,  $u_n = w_n + \sigma_n(v_n) + \sigma_n(z_n)$  with  $w_n \in H^-(\mu_{i+k+1}^-)$ ,  $\sigma_n > 0$ ,  $v_n + z_n \in S_{k-1,k}(\bar{\rho})$ ,  $v_n \in X_2^{k-1}$ ,  $z_n \in X_2^k$ ,  $||v_n + z_n|| = \bar{\rho}$  and

$$J_{a_n,b_n}(u_n) = -\frac{1}{2} \|w_n\|^2 - \frac{1}{2} \sigma_n^2 \bar{\rho}^2 + \frac{b_n}{2} \|Sw_n + \sigma_n Sv_n + \sigma_n Sz_n\|^2 - \frac{b_n - a_n}{2} \|[\bar{u} + Sw_n + \sigma_n Sv_n + \sigma_n Sz_n]^-\|^2.$$

We can assume  $\hat{w}_n = \frac{w_n}{\|u_n\|} \rightharpoonup \hat{w}$ ,  $\hat{v}_n = \frac{v_n}{\|u\|} \rightarrow \hat{v}$ ,  $\hat{z}_n = \frac{z_n}{\|u\|} \rightarrow \hat{z}$  and  $\hat{\sigma}_n = \frac{\sigma_n}{\|u_n\|} \rightarrow \hat{\sigma} \geq 0$ . Dividing by  $\|u_n\|^2$  and passing to the limit, by the definition of  $\bar{\rho}$ , we have

$$\lim_{n \to \infty} \sup \frac{J_{a_n,b_n}(u_n)}{\|u_n\|^2} \le \frac{1}{2} \|\hat{w}\|^2 (\frac{b}{|\mu_{i+k+1}|} - 1) + \frac{\hat{\sigma}^2}{2} \|\hat{z}\|^2 (\frac{b}{|\mu_{i+k}|} - 1) + \frac{\hat{\sigma}^2}{2} \|\hat{v}\|^2 (\frac{b}{|\mu_{i+k-1}|} - 1) \le 0.$$

Thus we proved the lemma.

We have the following.

**Proposition 4.2.** Let  $\delta_{k-1}$ ,  $\rho_{k-1}$ ,  $R_{k-1}$  with  $\rho_{k-1} < R_{k-1}$  be as in Lemma 4.6. Then for any a and b with  $\mu_{i+k}^- - \delta_{k-1} \le -b < \mu_{i+k-1}^- \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ , there exist two critical points  $v_i^{(k-1)}$ , i = 1, 2, for  $J_{a,b}$  with

$$0 < \inf_{\substack{v \in H^{+}(\mu_{i+k-1}^{-}) \\ \|v\| = \rho_{k-1}}} J_{a,b}(v) \le J_{a,b}(v_{i}^{(k-1)})$$

$$\leq \sup_{\substack{w \in \Delta_{R_{k-1}}(S_{k-1,k}(\bar{\rho}), X_{i}^{k})}} J_{a,b}(w), i = 1, 2,$$

where  $S_{k-1,k}(\bar{\rho}) = \{ v \in X_2^{k-1} \oplus X_2^k | ||v|| = \bar{\rho} \}.$ 

Next we take integers  $i,\ k$  such that  $\mu_{i+k}^->\mu_{i+k-1}^->\mu_{i+k-2}^->\mu_{i+k-3}^-$ . We set

$$X_1^{k-3} = H^-(\mu_{i+k-2}^-), X_2^{k-3} = span\{e_{i+k-3}^-\}, X_3^{k-3} = H^+(\mu_{i+k-4}^-).$$

As the previous case we define the functional  $\Psi$  and the manifold C on H with respect to the decomposition  $H = X_1^{k-3} \oplus X_2^{k-3} \oplus X_3^{k-3}$ . We also define  $\widetilde{J}: C \to H$  by  $\widetilde{J} = J \circ \Psi$ . Then  $\widetilde{J} \in C_{loc}^{1,1}$  and  $\widetilde{J}_{a,b}$  satisfies the  $(P.S.)_c^*$  condition with respect to  $(C_n)_n$ ,  $C_n = C \cap H_n$  for any c. We have the following lemma.

**Lemma 4.7.** Let  $\alpha'$  and  $\beta'$  be such that  $0 < \alpha' < \beta'$  and  $\delta'$  be as in Lemma 4.5. Then there exists  $\delta'' > 0$  such that for any a and b with

$$\mu_{i+k}^- - \delta' \le -b \le \mu_{i+k}^- \le \ldots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$$

or

$$\mu_{i+k-1}^- - \delta'' \le -b \le \mu_{i+k-2}^- \le \ldots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-,$$

the functional  $J_{a,b}|_{X_1^{k-2} \oplus X_3^{k-2}}$  has no critical points  $u \in X_1^{k-2} \oplus X_3^{k-2}$  with  $\alpha' \leq J_{a,b}(u) \leq \beta'$ .

**Lemma 4.8.** Let  $\alpha''$  and  $\beta''$  be such that  $0 < \alpha'' < \beta''$  and  $\delta'$  and  $\delta''$  be as in Lemma 4.5 and Lemma 4.7, respectively. Then there exist  $\delta^{(3)} > 0$  such that for any a and b with

$$\mu_{i+k}^- - \delta' \le -b \le \mu_{i+k}^- \le \ldots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$$

or

$$\mu_{i+k-1}^- - \delta'' \le -b \le \mu_{i+k-1}^- \le \dots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$$

or

$$\mu_{i+k-2}^- - \delta^{(3)} \le -b \le \mu_{i+k-3}^- \le \dots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-,$$

the functional  $J_{a,b}|_{X_1^{k-3} \oplus X_3^{k-3}}$  has no critical points  $u \in X_1^{k-3} \oplus X_3^{k-3}$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ .

**Proof.** By the same method as the proof of Lemma 4.5, there exists  $\delta^{(3)} > 0$  such that for any a and b with  $\mu_{i+k-2}^- - \delta^{(3)} \le -b \le \mu_{i+k-3}^- \le \ldots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ , the functional  $J_{a,b}|_{X_1^{k-3} \oplus X_3^{k-3}}$  has no critical points  $u \in X_1^{k-3} \oplus X_3^{k-3}$  with  $\alpha'' \le J_{a,b}(u) \le \beta''$ . We claim that for  $\delta''$  as in Lemma 4.7 and any a and b with  $\mu_{i+k-1}^- - \delta'' \le -b \le \mu_{i+k-1}^- \le \ldots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ ,  $J_{a,b}|_{X_1^{k-3} \oplus X_3^{k-3}}$  has no critical points  $u \in X_1^{k-3} \oplus X_3^{k-3}$  with  $\alpha'' \le J_{a,b}(u) \le \beta''$ . Now we have

$$\begin{array}{lcl} J_{a,b}|_{X_1^{k-3} \oplus X_3^{k-3}} & = & J_{a,b}|_{\{X_1^{k-2} \cup (X_1^{k-3} \setminus X_1^{k-2})\} \oplus X_3^{k-3}} \\ & = & J_{a,b}|_{\{X_1^{k-2} \oplus X_3^{k-3}\} \cup \{(X_1^{k-3} \setminus X_1^{k-2}) \oplus X_3^{k-3}\}}. \end{array}$$

Since  $X_3^{k-3} \subset X_3^{k-2}$  and, by Lemma 4.7, for  $\mu_{i+k-1}^- - \delta'' \leq -b \leq \mu_{i+k-2}^- \leq \mu_{i+1}^- < -a < \mu_i^- \leq \mu_1^-$ ,  $J_{a,b}|_{X_1^{k-2} \oplus X_3^{k-2}}$  has no critical points  $u \in X_1^{k-2} \oplus X_3^{k-2}$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ , it follows that  $J_{a,b}|_{X_1^{k-2} \oplus X_3^{k-3}}$  has no critical points  $u \in X_1^{k-2} \oplus X_3^{k-3}$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ . Next we consider  $J_{a,b}|_{(X_1^{k-3} \setminus X_1^{k-2}) \oplus X_3^{k-3}}$ . Since  $X_1^{k-3} \setminus X_1^{k-2} = X_2^{k-2} \subset X_3^{k-1}$ ,  $X_3^{k-3} \subset X_3^{k-1}$ , and by Lemma 4.5, for  $\mu_{i+k}^- - \delta' \leq -b \leq \mu_{i+k-1}^- \leq \ldots \leq \mu_{i+1}^- < -a < \mu_i^- \leq \mu_1^-$ ,  $J_{a,b}|_{X_1^{k-1} \oplus X_3^{k-1}}$  has no critical points  $u \in X_1^{k-1} \oplus X_3^{k-1}$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ , it follows that  $J_{a,b}|_{X_1^{k-3} \setminus X_1^{k-2} \oplus X_3^{k-3}}$  has no critical points in  $(X_1^{k-3} \setminus X_1^{k-2}) \oplus X_3^{k-3}$ . Thus for  $\mu_{i+k-1}^- - \delta'' \leq -b \leq \mu_{i+k-1}^- \leq \ldots \leq \mu_{i+1}^- < -a < \mu_i^- \leq \mu_1^-$ ,  $J_{a,b}|_{X_1^{k-3} \oplus X_3^{k-3}}$  has no critical points  $u \in X_1^{k-3} \oplus X_3^{k-3}$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ . We also claim that for  $\delta'$  as in Lemma 4.5 and any a and b with  $\mu_{i+k}^- - \delta' \leq -b \leq \mu_{i+k}^- \leq \ldots \leq \mu_{i+1}^- < -a < \mu_i^- \leq \mu_1^-$ ,  $J_{a,b}|_{X_1^{k-3} \oplus X_3^{k-3}}$  has no critical points  $u \in X_1^{k-3} \oplus X_3^{k-3}$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ . We have

$$J_{a,b}|_{X_1^{k-3} \oplus X_3^{k-3}} = J_{a,b}|_{\{X_1^{k-1} \cup (X_1^{k-3} \setminus X_1^{k-1})\} \oplus X_3^{k-3}}$$
$$= J_{a,b}|_{\{X_1^{k-1} \oplus X_3^{k-3}\} \cup \{(X_1^{k-3} \setminus X_1^{k-1}) \oplus X_2^{k-3}\}}.$$

Since  $X_3^{k-3} \subset X_3^{k-1}$  and by Lemma 4.5, for  $\mu_{i+k}^- - \delta' \leq -b \leq \mu_{i+k-1}^- \leq \ldots \leq \mu_{i+1}^- < -a < \mu_i^- \leq \mu_1^-$  ( $\delta'$  is as in Lemma 4.5),  $J_{a,b}|_{X_1^{k-1} \oplus X_3^{k-1}}$  has no critical points  $u \in X_1^{k-1} \oplus X_3^{k-1}$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ , it follows that  $J_{a,b}|_{X_1^{k-1} \oplus X_3^{k-3}}$  has no critical points  $u \in X_1^{k-1} \oplus X_3^{k-3}$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ . Next we consider  $J_{a,b}|_{(X_1^{k-3} \setminus X_1^{k-1}) \oplus X_3^{k-3}}$ . Since  $X_1^{k-3} \setminus X_1^{k-1} = X_2^{k-1} \cup X_2^{k-2} \subset X_3^k$ ,  $X_3^{k-3} \subset X_3^k$ , and by Lemma 4.1, for  $\mu_{i+k+1}^- < -b \leq \mu_{i+k}^- \leq \ldots \mu_{i+1}^- < -a < \mu_i^- \leq \mu_1^-$ ,  $J_{a,b}|_{X_1^{k} \oplus X_3^k}$  has no critical points  $u \in X_1^k \oplus X_3^k$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ , it follows that  $J_{a,b}|_{(X_1^{k-3} \setminus X_1^{k-1}) \oplus X_3^{k-3}}$  has no critical points  $u \in (X_1^{k-3} \setminus X_1^{k-1}) \oplus X_3^{k-3}$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ . Thus for  $\mu_{i+k}^- - \delta' \leq -b \leq \mu_{i+k}^- \leq \ldots \mu_{i+1}^- < -a < \mu_i^- \leq \mu_1^-$ ,  $J_{a,b}|_{X_1^{k-3} \oplus X_3^{k-3}}$  has no critical points  $u \in X_1^{k-3} \oplus X_3^{k-3}$  with  $\alpha'' \leq J_{a,b}(u) \leq \beta''$ . Thus we prove the lemma.

In general we take integers k, l with  $0 \le l \le k$  such that  $\mu_{i+k-l+1}^- > \mu_{i+k-l}^- > \mu_{i+k-l-1}^- > \dots$  We set

$$X_1^{k-l} = H^-(\mu_{i+k-l+1}^-), \ X_2^{k-l} = span\{e_{i+k-l}^-\}, \ X_3^{k-l} = H^+(\mu_{i+k-l-1}^-).$$

We define the functional  $\Psi: H\backslash (X_1^{k-l}\oplus X_3^{k-l})\to H$  and the manifold C on H with respect to the decomposition  $H=X_1^{k-l}\oplus X_2^{k-l}\oplus X_3^{k-l}$ . We also define  $\widetilde{J}_{a,b}:C\to H$  by  $\widetilde{J}_{a,b}=J_{a,b}\circ\Psi$ . Then  $\widetilde{J}_{a,b}\in C_{loc}^{1,1}$  and for  $-b\to \mu_{i+k}^-$ ,  $-b<\mu_{i+k-l}^-$ ,  $\widetilde{J}_{a,b}$  satisfies the  $(P.S.)_c^*$  condition with respect to  $(C_n)_n$ ,  $C_n=C\cap H_n$ , for any c We have the following lemma.

**Lemma 4.9.** Let  $\alpha'''$  and  $\beta'''$  be such that  $0 < \alpha''' < \beta'''$  and  $\delta'$ ,  $\delta''$  and  $\delta^{(3)}$  be as in Lemma 4.5, Lemma 4.7 and Lemma 4.8, respectively. Then there exists  $\delta^{(l)} > 0$  such that for any a and b with

$$\mu_{i+k}^- - \delta' \le -b \le \mu_{i+k}^- \le \dots \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-,$$

. . .

or

$$\mu_{i+k-l+1}^- - \delta^{(l)} \le -b \le \mu_{i+k-l}^- \le \dots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-,$$

the functional  $J_{a,b}|_{X_1^{k-l} \oplus X_3^{k-l}}$  has no critical points  $u \in X_1^{k-l} \oplus X_3^{k-l}$  with  $\alpha''' \leq J_{a,b}(u) \leq \beta'''$ .

**Lemma 4.10.** There exist  $\delta_{k-l} > 0$ ,  $\rho_{k-l} > 0$ ,  $\bar{\rho} > 0$  and  $R_{k-l} > 0$  with  $0 < \rho_{k-l} < R_{k-l}$  such that for any a and b with

$$\mu_{i+k}^- - \delta_k \le -b < \mu_{i+k}^- \le \dots \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-,$$

or

$$\mu_{i+k-1}^- - \delta_{k-2} \le -b < \mu_{i+k-1}^- \le \dots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-,$$

. . .

or

$$\mu_{i+k-l+1}^{-} - \delta_{k-l} \leq -b < \mu_{i+k-l}^{-} \leq \dots \leq \mu_{i+1}^{-} < -a < \mu_{i}^{-} \leq \mu_{1}^{-},$$

$$\sup_{v \in \Sigma_{R_{k-l}}(S_{k-l,k-l+1,\dots,k}(\bar{\rho}), X_{1}^{k})} J_{a,b}(v) < \inf_{w \in H^{+}(\mu_{i+k-l}^{-}) = X_{2}^{k-l} \oplus X_{3}^{k-l}} J_{a,b}(w),$$
where  $S_{k-l,k-l+1,\dots,k}(\bar{\rho}) = \{ z \in X_{2}^{k-l} \oplus X_{2}^{k-l+1} \oplus \dots \oplus X_{2}^{k} | \|z\| = \bar{\rho} \}.$ 

**Proof.** The proof has the same processure as the proof of Lemma 4.6.

**Proposition 4.3.** Let  $\delta_k$  be as in Lemma 4.2. Then there exist  $\delta_{k-1}, \ldots, \delta_{k-l}$  such that for any a and b with

$$\mu_{i+k}^- - \delta_k \le -b < \mu_{i+k}^- \le \dots \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-, \text{ or }$$
  
 $\mu_{i+k-1}^- - \delta_{k-2} \le -b < \mu_{i+k-1}^- \le \dots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-,$ 

or

 $\mu_{i+k-l+1}^- - \delta_{k-l} \le -b < \mu_{i+k-l}^- \le \ldots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ , there exist two critical points  $v_i^{(k-l)}$ , i = 1, 2, in  $X_2^{k-l}$  for  $J_{a,b}$  with

$$0 < \inf_{\substack{w \in H^+(\mu_{i+k-l}^-) \\ \|w\| = \rho_{k-l}}} J_{a,b}(w) \le J_{a,b}(v_i^{(k-l)}) \le \sup_{v \in \Delta_{R_{k-l}}(S_{k-l,k-l+1,\dots,k}(\hat{\rho}),X_1^k)} J_{a,b}(v).$$

**Proof.** Let  $\delta_k$ ,  $\delta'$  and  $\delta^{(l)}$  be as in Lemma 4.2 and Lemma 4.9 respectively. By the same processure of the proof of Proposition 4.1, there exist  $\delta_{k-1}, \ldots, \delta_{k-l}$  with  $\delta_{k-1} \leq \delta' \ldots, \delta_{k-l} \leq \delta^{(l)}$  such that for any a and b with the regions in the assumption of Lemma 4.10, there exist two critical points  $v_i^{(k-l)}$ , i=1,2, in  $X_2^{k-l}$  for  $J_{a,b}$  such that  $0 < \inf_{w \in H^+(\mu_{i+k-l}^-) = X_2^{k-l} \oplus X_3^{k-l}} J_{a,b}(w) \leq J_{a,b}(v_i^{(k-l)})$ 

 $\leq \sup_{v \in \Delta_{R_{k-l}}(S_{k-l,k-l+1,\dots,k}(\bar{\rho}),X_1^k)} J_{a,b}(v)$ . Since  $X_2^{k-l+1}, X_2^{k-l+2},\dots,X_2^k \subset X_1^{k-l}$ , by Lemma 4.9, the critical points  $v_i^{(k-l)}$ , i=1,2, exist only in the subspace  $X_2^{k-l}$ .

#### PROOF OF THEOREM 1.1. Let

$$\delta = \min\{\delta_k, \delta_{k-1}, \delta'\}.$$

By Proposition 4.1, 4.2 and 4.3, for fixed k and any a and b such that  $\mu_{i+k}^- - \delta \le -b < \mu_{i+k}^- \le \ldots \le \mu_{i+1}^- < -a < \mu_i^- \le \mu_1^-$ , there exist at least two nontrivial solutions  $v_i^{(j)}$ , i = 1, 2, in  $X_2^j$  for each  $j, 1 \le j \le k$ , for  $J_{a,b}$ , which satisfy the followings:

$$0 < \inf_{\substack{w \in H^{+}(\mu_{i+k}^{-}) \\ \|w\| = \rho_{k}}} J_{a,b}(w) \le J_{a,b}(v_{i}^{(k)}) \le \sup_{v \in \Delta_{R_{k}}(S_{k}(\bar{\rho}), X_{1}^{k})} J_{a,b}(v),$$

$$0 < \inf_{\substack{w \in H^+(\mu_{i+k-1}^-) \\ \|w\| = \rho_{k-1}}} J_{a,b}(w) \le J_{a,b}(v_i^{(k-1)}) \le \sup_{v \in \Delta_{R_{k-1}}(S_{k-1,k}(\bar{\rho}),X_1^k)} J_{a,b}(v),$$

$$0 < \inf_{\substack{w \in H^+(\mu_{i+k-2}^-) \\ \|w\| = \rho_{k-2}}} J_{a,b}(w) \le J_{a,b}(v_i^{(k-2)}) \le \sup_{v \in \Delta_{R_{k-2}}(S_{k-2,k-1,k}(\bar{\rho}),X_1^k)} J_{a,b}(v),$$

. . .

$$0 < \inf_{\substack{w \in H^+(\mu_{i+k-l}^-) \\ \|w\| = \rho_{k-l}}} J_{a.b}(w) \le J_{a.b}(v_i^{(k-l)}) \le \sup_{v \in \Delta_{R_{k-l}}(S_{k-l,k-l+1,...,k}(\bar{\rho}), X_1^k)} J_{a.b}(v).$$

We recall that we can suppose  $R_{k-l} > \ldots > R_{k-1} > R_k$ ,  $2 \le l \le k-1$ , so  $\Delta_{R_k}(S_k(\bar{\rho}), X_1^k) \subset \Sigma_{R_{k-1}}(S_{k-1,k}(\bar{\rho}), X_1^k)$  and  $\Delta_{R_{k-l+1}}(S_{k-l+1,k-l+2,\ldots,k}(\bar{\rho}), X_1^k)$ 

$$X_1^k$$
)  $\subset \Sigma_{R_{k-l}}(S_{k-l,k-l+1,...,k}(\bar{\rho}), X_1^k)$ . Thus we have

$$0 < \inf_{\substack{w \in X_2^k \oplus X_3^k \\ \|w\| = \rho_k}} J_{a,b}(w) \le J_{a,b}(v_i^{(k)}) \le \sup_{v \in \Delta_{R_k}(S_k(\bar{\rho}), X_1^k)} J_{a,b}(v)$$
$$\le \sup_{v \in \Sigma_{R_{k-1}}(S_{k-1,k}(\bar{\rho}), X_1^k)} J_{a,b}(v)$$

$$< \inf_{\substack{w \in X_2^{k-1} \oplus X_3^{k-1} \\ \|w\| = \rho_{k-1}}} J_{a,b}(w) \le J_{a,b}(v_i^{(k-1)}) \le \sup_{v \in \Delta_{R_{k-1}}(S_{k-1,k}(\bar{\rho}), X_1^k)} J_{a,b}(v) \le \dots$$

$$\leq \sup_{v \in \Delta_{R_{k-l+1}}(S_{k-l+1,k-l+2,\dots,k}(\bar{\rho}),X_1^k)} J_{a,b}(v) \leq \sup_{v \in \Sigma_{R_{k-l}}(S_{k-l,k-l+1,\dots,k}(\bar{\rho}),X_1^k)} J_{a,b}(v)$$

$$<\inf_{\substack{w\in X_2^{k-l}\oplus X_3^{k-l}\\\|w\|=\rho_{k-l}}}J_{a,b}(w)\leq J_{a,b}(v_i^{(k-l)})\leq \sup_{v\in\Delta_{R_{k-l}}(S_{k-l,k-l+1,\dots,k}(\bar{\rho}),X_1^k)}J_{a,b}(v).$$

Thus  $J_{a,b}(u)$  has at least 2k nontrivial critical points, which proves the theorem.

#### References

- [1] T. Bartsch and M. Klapp, Critical point theory for indefinite functionals with symmetries, J. Funct. Anal., 107-136 (1996).
- [2] Q. H. Choi and T. Jung, An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations, 117, 390-410 (1995).
- [3] Q. H. Choi and T. Jung, Multiple periodic solutions of a semilinear wave equation at double external resonances, Communications in Applied Analysis 3, 73-84 (1999).
- [4] G. Fournier, D. Lupo, M. Ramos, and M. Willem, Limit relative category and critical point theory, Dynam. Report, 3, 1-23 (1993).
- [5] A. Marino and C. Saccon, Nabla theorems and multiple solutions for some noncooperative elliptic systems, Sezione Di Annalisi Mathematica E Probabilita. Dipartimento di Mathematica, universita di Pisa. 2000.
- [6] A. M. Micheletti and C. Saccon. Multiple nontrivial solutions for a floating beam equation via critical point theory, J. Differential Equations, 170, 157-179 (2001).

Tack Sun Jung
Department of Mathematics,
Kunsan National University,
Kunsan 573-701, Korea
E-mail:tsjung@kunsan.ac.kr

Q-Heung Choi
Department of Mathematics Education,
Inha University,
Incheon 402-751, Korea
E-mail:qheung@inha.ac.kr