Honam Mathematical .J. 26(2004). No. 4. pp. 359-5&7

INTUITIONISTIC FUZZY NORMAL SUBGROUPS AND
INTUITIONISTIC FUZZY COSETS

KuL HUR %* , SU YEON JANG® AND HEE WoN Kanc ®

Abstract. We study some properties of intuitionistic fuzzy normal
subgroups of a group. In particular, we obtain two characterizations
of intuitionistic fuzzy normal subgroups. Moreover, we introduce
the concept of an intuitionistic fuzzy coset and obtain several results

which are analogous of some basic theorems of group theory.

0. Introduction

The concept of a fuzzy set was introduced by Zadeh in [17], and
since then these has been a tremendous interest in the subject due to its
diverse applications ranging from engineering and computer science to
social behavior studies. In particular, several researchers [6, 7, 14, 15,
16] applied the notion of a fuzzy set to group theory.

In 1986, Atanassov[l] introduced the concept of intuitionistic fuzzy
sets as the generalization of fuzzy sets. After that time, Coker and his
colleagues [4, 5, 8], and Lee and Lee[13] applied the notion of intuition-
istic fuzzy sets to topology. Also, several researchers [2. 3, 10, 11, 12]

applied one to algebra.
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In this paper, we investigate some properties of intuitionistic fuzzy
normal subgroups of a group. In particular, we obtain two characteriza-
tions of intuitionistic fuzzy normal subgroups. Moreover, we introduce
the concept of intuitionistic fuzzy cosets and obtain several results which

are analogs of some basic theorems of group theory.
1. Preliminaries

We will list some concepts and results needed in the later sections.

For sets X, Y and Z, f = (f1,f2) : X — Y x Z is called a complex
mapping if f1: X - Y and f, : X — Z are mappings.

Throughout this paper, we will denote the unit interval [0,1] as 1.

Definition 1.1[1]. Let X be a nonempty set. A complex mapping
A = (pa,va) + X — I x I is called an intuitionistic fuzzy set (in
short, IFS) on X if pug + v4 < 1, where the mapping pus : X — I
and v4 : X — I denote the degree of membership (namely pa(x)) and
the degree of nonmembership (namely v4(z)) of each x € X to A, re-

spectively.
We will denote the set of all IFSs in X as IFS(X).

Definitions 1.2[1]. Let X be a nonempty set and let A = (pa,v4) and
B = (up,vp) be IFSs on X. Then

(1) AC Biff ug < pp and vy > vp.
(2)A Biff AC Band B C A.
(3) A° = (v, p1a)-

(4) AN B = (ppa A pg,va Vg).

(5) AUB = (ppa V pip.va Avg).
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(6) []A = (na,1 = pa), <>A=(1-va,va)

Definition 1.3{1]. Let {A;};,cs be an arbitrary family of IFSs in X,
where A; = (pa,,va4,) for each i € J. Then

(1) N4 = (Apa,, Vva,)

(2) Udi = (Vpa, Ava,)-

Definition 1.4[4]. 0. = (0,1) and 1. = (1,0).

Definition 1.5[4]. Let X and Y be nonempty sets and let f: X — Y
be a mapping. Let A = (p4,v4) be an IFS in X and B = (ug,vp) be
an [FS in Y. Then

(1) the preimage of B under f, denoted by f~!(B), is the IFS in X
defined by:

FHB) = (f(us), f 1 (vB)),

where f~!(up) = ppo fand f~'(vg) =vpo f.

(2) the image of A under f, denoted by f(A), is the [FS in Y defined
by:

f(A) = (f(pa), f(va)),

where for each y € YV

-1 L ALT iff1 0.
f(MA)(y)_{(\)/IEf (wy Halz) iff (m#@

ff N y) =
and
-1 valx 1 -1 @
Fa)y) = 3 Neer i va@ i) #
! iff ) = 0.

Definition 1.6[11]. Let (G, -) be a groupoid and let A € IF'S(X). Then
A is called an intuitionistic fuzzy subgroupoid (in short, IFGP) of G if
for any z,y € G, palxy) = pa(c) A paly) and va(zy) < valz) Vvaly).
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We will denote the set of all IFGPs of G as IFGP(G).

Definition 1.7[12]. Let G be a group and let A € ITFGP(G). Then
A is called an intuitionistic fuzzy subgroup (in short, IFG) of G if
A(z7Y) > A(z), ie., pa(z™!) > pa(z) and va(z™!) < vu(z), for each
z €G.

We will denote the set of all IFGs of G as IFG(G).

Result 1.A[12, Proposition 2.6]. Let A € IFG(G). Then A(z~!) =
A(z), ie., pa(z™!) = pa(z),va(z™!) = va(z) and A(z) < Ale), ie.,
pa(z) < pale),va(z) > vale) for each z € G, where e is the identity

element of G.

Result 1.B[12, Proposition 2.8]. Let A € IFG(G). If A(zy™!) =
Ale), for any z,y € G, then A(z) = A(y).

Definition 1.8. Let A be an IFS in a groupoid G. Then A is said to
have the sup propertyif for any T € P(G), there exists a tg € T such that

A(tg) = UtET A(t), i.e., NA(tO) = vteT uA(t) and I/A(to) = /\tET l/A(t),
where P(G) denotes the power set of G.

Result 1.C[12, Proposition 2.13]. Let f : G — G’ be a group
epimorphism, let A € IFG(G) and let B € IFG(G’). Then the followings
hold:

(1) If A has the sup property, then f(A4) € IFG(G’).
(2) f~YB) € IFG(G).

Definition 1.9[11]. Let A be an IFS in a set X and let A, € I with
A+ g < 1. Then the set AM) = {z € X : ua(x) > X and va(x) < u} is
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called a (A, p)-level subset of A.

Result 1.D[12, Proposition 2.18 and Proposition 2.19]. Let A
be an IFS in a group G. Then A € IFG(G) if and only if for each
(A, 1) € ImA with A < pa(e) and p > va(e), AM#) is a subgroup of G.

Let A be an IFG of a group G. Then for each (t,s) € I x I with
Ale) > (t,s), ie., pale) > t and va(e) < s, the level set A% is a
subgroup of G. If ImA = {(¢o, s0), (t1,81), - , (tn, Sn)}, the family of

level subgroups
{Ats) .0 <i<n}

consititutes the complete list of level subgroups of A.If the image set of
the IFG A of a finite group G consists of {(to, s0), (t1,51), - (tn,Sn) }
where tg > t; > --- > t, and sg < $1 < --- < Sp, then the level

subgroups of A form a chain :
Altosso) — Altrs1) = .. Albnisn) — 7

where A(e) = (o, so)-
Notation. N <0 G denotes that NV is a normal subgroup of a group G.

2. Intuitionistic fuzzy normal subgroups and intuitionistic
fuzzy cosets

Lemma 2.1. If A is an IFGP of a finite group G, then A is an IFG of G.

Proof. Let z € G. Since G is finite, x has finite order, say n. Then

2" = e, where e is the identity of G. Thus 27! = 2" !.Since A4 is an

[FGP of G,

pale ) = pale™) = pale" %) > pale)
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and
va(@™) = va(a™ ) = va(a"%2) < va(z).

Hence A is an IFG of G.

Lemma 2.2. Let A be an IFG of a group G and let z € G. Then
A(zy) = A(y) for each y € G if and only if A(z) = A(e).

Proof. (=): Suppose A(zy) = A(y) for each y € G. Then clearly
A(z) = Ale).
(«<): Suppose A(z) = A(e) and let y € G. Then, by Result 1.A,
ua(y) < pale) and va(y) > va(e). Since A € IFG(G), pa(ry) >
() A pa(y) and va(zy) < va(z) Vva(y). Thus pa(zy) > pa(y) and
va(zy) < va(y). On the other hand, by Result 1.A,

pa(y) = pa(z 'zy) > pa(z) A palzy) = pa(zy)
and
valy) = valzlry) < va(z) Vva(zy) = va(zy).

Hence pa(zy) = pa(y) and va(zy) = va(y) for each y € G.

Remark 2.3. It is easy to see that if A(z) = A(e), then A(zy) = A(yx)
for each y € G.

Definition 2.4. Let A be an IFG of a group G and let z € G. We
define a complex mappings

Ax = (par,Vaz) G-I x 1
and

TA = (pzaVes) G—=1Tx1

as follows respectively: for each g € G.

Az(g) = A(gz™!) and zA(g) = Az g).
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Then Az [resp. zA] is called the intustionistic fuzzy right [resp. left]
coset of G determined by z and A.

Remark 2.5. Definition 2.4 extends in a natural way the usual def-
inition of a "coset” of a group. This is seen as follows : Let H be a
subgroup of a group G and let A = (xx, xH<), where xg is the charac-
teristic function of H. Let z,9 € G. Then Ar = (xgz, XHz)-

Suppose g € H. Then

Aa:(g:c) = XH:c( )v XH:cc(gm))

xu(gzz™"), xpe(gzz™))
(

(
(
= (x#(9), xu<(9))
(1, 0)
1.

Suppose g ¢ H. Then :

Ax(gz) = (xH.(9%), XHze(g2))
= (xm(gzz™"), xue(grz™))
= (xu(9), xn(9))
= (0, 1)
= 0.

So, it follows that Az : G — I x I is a complex mapping such that
Az |gz= 1. and Az | pge = 0~. Hence Az = (xpz, XHze).

The following is the immediate result of Definition 2.4:

Proposition 2.6. Let A be an IFG of a group G. Then:
(1) (zy)A = z(yA).
(2) Alzy) = (Az)y.
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(3) zA=Aif Az) = 1..

We know that any two left [resp. right] cosets of a subgroup H of
a group G are equal or disjoint. However this fact is not valid in the

intuitionistic fuzzy case as shown in the following example.

Example 2.7. Let G = {e = a,b,¢,d} be the Klein’s four group and
let A be the IFG of G defined by:

Afa) = 1., A(D) = (t1,1 — t1), A(c) = A(d) = (t2,1 — t3)
where 1 > t; <ty (to #0). Then bA # cA.

Definition 2.8{11]. Let A be an IFG of a group G. Then A is called an
intuitionistic fuzzy normal subgroup (in short, IFNG) if A(zy) = A(yz)
for any z,y € G.

We will denote the set of all IFNGs of G as IFNG(G).
The following is the immediate result of Definition 2.4, Definition 2.8:

Proposition 2.9. Let A be an IFG of a group G. Then the followings

are equivalent:
(1) pa(zyz™') > paly) and va(zyz™) < wvaly) for any ¢,y € G.
(2) A(zyxz~') = A(y) for any z.y € G.
(3) A € IFNG(G).
(4) xA = Ax for each z € G.
(5) xAz~! = A for each z € G.

Remark 2.10. Let G be a group.
(1) If pr4 is a fuzzy normal subgroup of G. then A = (p4,pu9) €
IFNG(G).
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(2) If A € IFNG(G), then p14 and v§ are fuzzy normal subgroups of
G.

(3) If A € IFNG(G), then [ JA. < > A € IFNG(G).

Let G be a group and a,b € G. We say that a is conjugate to b if
there exists z € G such that b = 2~ laz. It is well-known that conjugacy
is an equivalence relation on G. The equivalence classes in G under the

relation of conjugacy are called conjugate classes [8].

Theorem 2.11. Let A be an IFG of a group G. Then A € IFNG(G) if

and only if A is constant on the conjugate classes of G.

Proof. (=): Suppose A € [IFNG(G) and let z,y € G. Then A(y~lzy) =
A(zyy~') = A(z). Hence A is constant on the conjugate classes.

(«=): Suppose the necessary condition holds and let z,y € G. Then
A(zy) = A(zyzz™) = A(z(yr)z~!) = A(yz). Hence A € TFNG(G).

Let G be a group and let z,y € G. Then the element 2z ly~!

Ty is

usually denoted by [z,y] and called the commutator of z and y. It is

clear that if z and y commute with each other, then clearly [z,y] = e.
Let H and K be two subgroups of a group G. Then the subgroup

[H, K] is defined as the subgroup generated by the elements

{lz,y]:x € Hye K}.

It is well-known that N < G if and only if [N,G] < N.

The following is the generalization of the above result using intuition-

istic fuzzy sets.
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Theorem 2.12. Let A be an IFG of a group G. Then A € IFNG(G) if
and only if pa([z,y]) > pa(z) and va([z,y]) < va(z) for any z,y € G.

Proof. (=): Suppose A € IFNG(G) and let z,y € G. Then:

pallz,y)) = nalz 'y lay)
= pa(y 'zyz™') (By the hypothesis)
> pa(ylzy) Apalz™?) (Since A € IFG(G))
= pa(z) A pa(z) (By Theorem 2.11 and Result 1.A)
= pa(z)
and

Il
S
N
3
QQ
L
8
&

va(lz, )

VAN
N
N
Qe
8
<
8,

va(z) Vva(z)

(™
(v~
(y~'zy) Vvalz™)
(
(

129\ :1?)

Hence the necessary conditions hold.

(<): Suppose the necessary conditions hold and let 2,z € G. Then:

-1 1,.-1

palzz™ z7 zx)
> palz) A pa(lz, z]) (Since A € IFG(G))
pa(z) (By the hypothesis)

pa(z™ zr)

and

uA(zz"l;r_lzm)

valz™ zx)
< valz) Val(lz, z])

va(z).
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On the other hand,

1

pa(zzlzzz™h)

> pa(@) Apalz™ zz) Apa(z™t) (Since A € IFG(G))

pa(z)

pa(x) A pa(z™tzz) (By Result 1.A)

and

1

I

va(z) valzz lzzz™t)

IA

va(@) Vva(z™ zz) Vva(z™)

IN

valz) Vvg(zlzz).

1

Case (i): Suppose pa(z)Apa(z tzz) = pa(x) and va(z)Vva(z!

2x)
= va(z). Then pa(z) > pa(z) and va(z) < va(z) for any =,z € G.
Thus A is a constant mapping. So A(zy) = A(yz) for any z,y € G, i.e.,
A € IFNG(G).

Case (ii): Suppose pa(z) A pa(z™12z) = pa(r~'zz) and va(z) Vv

va(z™lzz) = va(z~lzz). Then pa(z) > pa(z™2z) and va(z) < va(z™?

zz) for any z,z € G. Thus pa(z7122) = pa(z) and va(z~'zz) = va(2),
i.e., A(x~'zz) = A(z) for any z,2 € G. So A is constant on the conju-
gate classes. By Theorem 2.11, A € IFNG(G). Hence, in either cases,

A € IFNG(G). This completes the proof.

Proposition 2.13. Let A be an IFNG of a group G and let (A, u) € I'x T
such that A < pa(e), u > va(e) and A+ p < 1, where e denotes the iden-
tity of G. Then AMH) 4 G.

Proof. By Result 1.D, A is a subgroup of G. Let £ € AM and let
z € G. Since A € IFNG(G), by Proposition 2.9(2), A(z " zz) = A(x).
Since z € AN ja(z) > X and va(x) < p. Thus pa(z"'zz) > A and
va(z7lzz) < . So z7lxz € A, Hence AP g G.
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Let A be an IFNG of a finite group G with ImA = {(¢o, s0), (t1,$1)," - ,
(tr,sr)}, where tg > t; > --- > t, and s9 < 87 < --- < 8,. Then it fol-
lows from Theorem 2.7 that the level subgroups of A form a chain of

normal subgroups:
Altosso) — Altns1) = 0~ Altrsr) — (%)

The following is the immediate result of Proposition 2.13:

Corollary 2.13[11, Proposition 3.5]. Let A be an IFNG of a group
G with identity e. Then G4 < G, where G4 = {x € G : A(x) = A(e)}.

The following is the converse of Proposition 2.13:

Proposition 2.14. If A is an [FG of a finite group G such that all the
level subgroups of A are normal in G, then A € IFNG(G).

Proof. Let ImA = {(to, sg), (t1,81), -, {tr,s,)}, where tg > ) > --- >
t, and s < 81 < -+ < 8. Then the family {A(tivsi) 10 <i<r}is the
complete set of level subgroups of G. By the hypothesis, A%+5) 4 G for
each 0 < ¢ < r. From the definition of the level subgroup, it is clear that

Al glb-rsion) — g € G A(z) = (i, 80) )

Since a normal subgroup of a group is a complete union of conjugate
classes, it follows that in the given chain (%) of normal subgroups, each
Altos)\ Alti-151) §5 a union of some conjugate classes. Since A is con-
stant on Alt»s)\ Alti-15i-1) it follows that A must be constant on each
conjugate class of G. Hence, by Theorem 2.11, A € IFNG(G).

Example 2.15. Let G be the group of all symmetries of a square.
Then G is a group of order 8 generated by a rotation through 7/2 and a
reflection along a diagonal of the square. Let us denote the elements of
G by {1.2,3.4.5,6.7,8}, where 1 is the identity, 2 is rotation through
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1 2 3 45 6 7 8
111 2 3 45 6 7 8
2(2 3416 7 8 5
313 41 2 7 8 5 6
4(4 1 2 3 8 5 6 7
515 8 7 6 1 4 3 2
6({6 5 8 7 2 1 4 3
7(7 6 5 8 3 2 1 4
88 76 5 4 3 21

Table 1

7/2, and 5 is a reflection along a diagonal: the multiplication table of G
is as shown in Table 1.

We can easily see that the conjugate classes of G are

{1},{3},{5,7},{6,8},{2,4}.

Let H = {1,3} and let K = {1,2,3,4}. Then clearly, H <G and K < G
(in fact, H is the center of G). Thus we have a chain of normal subgroups

given by

1CHCKCG. (x%)

Now we will construct an IFG of G whose level subgroups are precisely
the members of the chain (xx). Let (¢,,s;) € I x I, 0 < ¢ < 3 such that
t;+5; < 1,89 >t >ty > t3 and s9 < 51 < $9 < s3.

Define a complex mapping A = (4, v4) : G — I x I as follows:
A1) = (to, 80), A(H\{1}) = (t1,51). A(K\H) = (t2, $2), A(G\K) = (t3,83).

From the definition of A, it is clear that A(z) = A(x~!) for each r € G.

Also, we can easily check that for any z,y € G

palzy) = pa(x) A paly) and va(ey) <wva(z) vV ea(y).
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Furthermore, it is clear that A is constant on the conjugate classes.
Hence, by Theorem 2.11, A € IFNG(G).

Remark 2.16. Example 2.15 is the generalization of Example 3.10 in

[14] using intuitionistic fuzzy sets.
The following can be easily proved and the proof is omitted:

Lemma 2.17. Let A be an IFG of a group and let z € G. Then
A(z) = (A, p) if and only if £ € AX#) and z ¢ A®*) for each (¢,s) € IxI
such that t +s <1, > X and s < p.

It is well-known that if N is a normal subgroup of a group G, then

zy € N if and only if yz € N for any z,y € G.
The following result is the generalization of Proposition 2.14:

Proposition 2.18. Let A be an IFG of a group G. If AMK (A n) €
ImA, is a normal subgroup of G, then A € IFNG(G).

Proof. For any z,y € G, let A(z,y) = (A, 1) and let A(zy) = (¢,9)
be such that t > A and s < pu. Then, by Lemma 2.17, zy € A
and zy ¢ A%, Thus yz € AM and yz ¢ A9, So A(yx) = (\, 1),
i.e., A(ry) = A(yzx). Hence A € IFNG(G).

Proposition 2.19. Let f : X — Y be a groupoid homomorphism. If
A € IFGP(X), then f(A) € IFGP(Y).

Proof. For each y € Y, let X, = f~!(y). Since f is a homomorphism,

it is clear that

XyX; C X,y for any y,y' € Y. (x %)
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Let y,v/ €Y.

Case (i): Suppose yy' € f(X). Then clearly f(A)(yy') = 0~. Since
yy' & f(X), Xyy = 0. By (xx%), Xy =0 or X} = 0. Thus f(4)(y) = 0~
or f(A)(v') =0~. So

F AN yy) = 0n = (peay (W) A sy (), viay @) V vay (¥)).
Case(ii): Suppose yy’ € f(X). Then Xy # 0. If X, = 0 or X} = 0,
then f(A)(y) = 0. and f(A)(y') = 0. Thus
ray(uy') = ppay @) A ppay(y) and v (vy') < vy ) V vy @)
If X, # 0 and X # 0, then, by (s x ),

praywy) = ) pa) > \ owae) = V  paler)

zeXyy’ 2€Xy X, 26 Xy,z'€X)

\V  [ra(@) A pa(a’)] (Since A € IFGP(X))
reXyz'eX,

= (V wa@) A\ pal@))

zEXy z'eX,

v

= ppay¥) A ppay(y)
and

viay(wy) = N\ valm) < A walz) = N\ valr)

z€EXyy’ z€Xy X, 2€ Xy’ € X)),

A val@) v va@)

r€Xy.r'e X,

= (A va@)v( A wa@@)

reXy, r’'eX)

IA

= vy V).

Consequent]y, ;uf(A)(yy/) > #f(A)(y)/\,“f(A)(yl) and Vf(A)(yy/) < Vf(A)(y)
VV_/‘(‘Ag)(y,). Hence f(A) S IFGP(Y)
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Proposition 2.20. Let f : X — Y be a group [resp. ring, algebra
and field | homomorphism. If A € IFG(X) [resp. IFR(X), IFA(X) and
IFF(X) ], then f(A) € IFG(Y) [resp. IFR(Y), IFA(Y) and IFF(Y) |,
where IFG(X) [resp. IFR(X), IFA(X) and IFF(X) ] denotes the set of
all intuitionistic fuzzy subgroups [resp. subrings, subslgebras and sub-

fields | of a group [resp. ring, algebra and field | X.

Proof. Suppose f : X — Y is a group homomorphism and let A €

IFG(X). Then, by Proposition 2.15, we need only to show that zp(4)(y~")

> pypay(y) and vy (y) < vpa)(y) foreachy € Y. Let y € Y.
Case(i): Suppose y~! ¢ f(X). Then y ¢ f(X). Thus

FAY™Y) = 0. = f(A)().
Case(ii): Suppose y™! € f(X). Then y € f(X). Thus
ppayyt) = \/ pat™) > \/ pa(t) = ppay(v)
t-lef-1{y=1) tef~1(y)
and
viayy ) = N vatth < A valt) =viay).
Flesiy) tef1(y)
Hence f(A) € IFG(Y). The proofs of the rest are omitted. This com-
pletes the proof.

Another proof : Let (A, u) € Imf(A). Then there exists a y € Y
such that
AW =0V nma@), N\ val@)=0mp.
z€f Uy zef~1(y
Since A € IFG(X), by Result 1.A, A < pa(e) and p > vy(e).
Case(i): Suppose (A, ) = 0. Then clearly (f(A4))*#) =Y.
So, by Result 1.D, f(A) € [FG(Y).
Case(ii): Suppose A > 0 and p < 1. Then:
2 € (f(A)P
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if and only if py(4)(2) > A and vy 4y(z) < p

if and only if V¢ -1,y pa(z) > A and Viep-1zva(z) < p

if and only if there exists an z € X such that f(x) = 2z, pa(z) > X and
va(z) < p

if and only if z € (f(AMM).

Thus (f(A))M) = f(AP#). Since f is a homomorphism and AC#)
is a subgroup of X, f(A®#) is a subgroup of Y. So, by Result 1.D,
f(A) € IFG(X). Hence, in all, f(A) € IFG(X).

Remark 2.21. In Result 1.C, A has the sup property but in Proposi-

tion 2.20, there is no any restriction on A.

Proposition 2.22. Let f : G — G’ be a group homomorphism, let A €
IFNG(G) and let B € IFNG(G’). Then the followings hold:

(1) If f is surjective, then f(A) € IFNG(Q').

(2) f~Y(B) € IFNG(G).

Proof. (1) By Proposition 2.20, f(A) € IFG(G’). Let (A, 1) € Iinf(A).
From the Process of the another proof of Proposition 2.20, it is clear that
A < pale), e > vale) and (f(A))M) = fF(AAW). Since A € IFNG(G),
by Proposition 2.13, AA#) 9G. Since f is an epimorphism, (f(A))* =
F(ANY 4 G". Hence, by Proposition 2.18, f(4) € IFNG(G).
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(2) By Result 1.C (2), f7}(B) € IFG(G). Let =,y € G. Then:

FHB)zy) = (F(es)(zy), [ (ve)(zy))

= (uB(f(zy)),ve(f(zy)))

= (u(f(@)f(¥)), vB(f(2)f(¥)))

(Since f is a homomorphism)

= (uB(f(y)f(2)),va(f(y)f(2))) (Since B € IFNG(f(G)))
= (uB(f(yz)),vB(f(yz))) (Since f is a homomorphism)
= (fMeB)(yx), [ (vB)(yz))
= f7Y(B)(y2).

Hence f~1(B) € IFNG(G).

The following is the immediate result of Proposition 2.20, Result 1.C
(2) and Proposition 2.22:

Theorem 2.23. Let f : G — G’ be a group homomorphism. Then
the mapping A — f(A) defines a one-to-one correspondence between
the set of all IF-invariant IFGs [resp. IFNGs | of G and IFG(G’) [resp.
IFNG(G')], provided that f is surjective in the latter case.

Theorem 2.24. Let A be an IFNG of a group G with identity e. We
define a complex mapping A = (nz,v4) s G/Ga — I x I as follows :
for each z € G,

A(Gaz) = A(z).
Then A € IFNG(G/G,). Conversely, if N <G and B € IFNG(G/N)

such that B(Ng) = B(N) only when g € N, then there exists an
A € IFNG(G) such that G4 = N and A = B.
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Proof. It is clear that A € IFS(G/G,) from the definition of A .
Suppose Gaxr = Gay for some z,y € G. Then, by Corollary 2.13,
ry~! € G4. Thus A(zy™!) = A(e). By Result 1.B, A(z) = A(y). So
A(GAI) = A(GAy). Hence A is well- defined. Furthermore, it is easy to
see that A € IFG(G/G4). Let z,y € G. Then

A(GuzGay) = A(Gazy)

Hence A € IFNG(G/G,).
Now let N < G and let B € IFNG(G/G4) such that B(Ng) = B(N)
only when ¢ € N. We define a complex mapping A = (ua,v4) : G —

I x T as follows : for each € G, A(z) = B(Nz). Then we can easily
see that A is well-defined and A € IFG(G). Let z,y € G. Then

Aly~'zy) = B(Ny 'zy)
= B(Ny 'NzNy)
= B(Nz) (Since B € IFNG(G/N))
= Az).

Thus A is constant on the conjugate classes of G. So, by Theorem 2.11,
A € IFNG(G).

Now let g € N. Then A(g) = B(Ng) = B(N) = A(e). Thus g € G4.
So N C Ga. Let £ € G4. Then A(z) = A(e). Thus B(Nz) = B(N).
Soz € N,ie, G4 C N. Hence N = G4. Furthermore, A = B. This

completes the proof.

3. Intuitionistic fuzzy Lagrange’s Theorem
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Let A be an IFS in a group G and for each x € G, o f : G — G [resp.
fz : G — G | be a mapping defined as follows, respectively: for each
g€G,

«f(g9) = zg [resp. fa(g) = gz].

Proposition 3.1. Let A be an IFG of a group G. Then
«f(A) = zA [resp. fz(A) = Az] for eachz € G.
Proof. Let g € G. Then:

pray@ =\ pal@)=\ palg)=palgz™")
gefi o) gz=g

and
vi(@ =N vald)= N\ valy) =valgz™).
gefz ) g'z=g

Hence, f,(A) = Az. Similarly, we can see that ,f(A) = zA.

Proposition 3.2. Let A be a IFG of a group G and let g1, 92 € G. Then
g1A = goAlresp. Agy = Agy] if and only if A(gy'g2) = A(g;'g1) = Ale)
resp. A(g1971) = Alg297 ') = Ale)].

Proof. (=): Suppose g1A = g2A. Then ¢g1A(g1) = g2A(g1) and
q1A(g2) = g2A(g2). Algy'g1) = A(e) and A(g;'g2) = A(e). Hence
Algy'91) = Algy ' g2) = Ale).

(«<): Suppose A(g;'g2) = A(g;'g1) = Ale). Let € G. Then
N A(z) = Alg7'x) = A(gy Y9295 ' o). Since A is a IFG(G),

nalgr'e) = palor o205 ) > paley ' 92) A pa(gy ‘o)
= pale) Apalgy'z)
= 1a(gy'2) (By Result 1.A)
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and

va(g; 'z) = valg; '9295 '2) < valgr'ge) Vwvalg; ')

= va(e) Vra(gy'z)

-1

= va(g; ).

Thus goA C g1 A. Similarly, we have that g1A C goA. Hence g1 A = ¢ A.
This completes the proof.

Proposition 3.3. Let A be an IFG of a group G. If Ag, = Ag, for any
g1,92 € G, then A(g1) = A(go).

Proof. Suppose Ag; = Ag, for any g1, g2 € G. Then Ag;(g2) = Ags (g2)-
Thus A(g297') = A(e). Hence, by Result 1.B, A(g1) = A(go).

Proposition 3.4. Let A be an IFG of a group G. If AXM# g = APy
for any z,y € G\ AM¥ and each (A, p) € T x I with A + ¢ < 1, then
A(z) = A(y).

Proof. Suppose AM#z = AGMy for any z,y € G\ AN and each
(A, ) € I x I with A4 < 1. Then yz=! € ACH. Thus pa(yz=!) > A
and va(yz~!) < p. Since x € G\ AN pa(z) < A and va(z) > p. On
the other hand,

na(y) = palyz™'z) > palyz™") A pa(z)
and

va(y) = valyz™ ') <walyz™") v va(a).

Thus y1a(y) > pa(z) and va(y) < va(z). By the similar arguments, we
have that pa(y) < pa(x) and va(y) > va(z). Hence A(x) = A(y).
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Proposition 3.5.Let A be an IFNG of a group G and let z € G. Then
Az(zg) = Az(gz) = A(g) for each g € G.

Proof. Let g € G, Then

paz(zg), vaz(zg))

pas(Tgr™12), vas(zga ™ z))

-1

Az(zg) =

xz7Y), va(zgr~lzz™') (By the definition of Az)
pa(zgz™"), va(zgz™))

1(9), va(9)) (By Theorem2.11)

= Alg).

(
(
= (pa(zgz™
(
(

Similarly, we have Ax(gx) = A(g). This completes the proof.

Remark 3.6. Proposition 3.5 is analogous to the result in group the-
ory that if N < G, then Nx = zN for each z € G.

If N is a normal subgroup of a group G, then the cosets of G with
respect to N form a group (called the guotient group G/N). For an
IFNG, we have the analogous result :

Theorem 3.7. Let A be an IFNG of a group G and let G/A be the set
of all the intuitionistic fuzzy cosets of A. We define an operation * on
G/A as follows : for any =,y € G,

Az x Ay = Axy.

Then (G/A, *) is a group. In this case, G/A is called the intuitionistic
fuzzy quotient group induced by A.

Proof. Let x,y, xo,yo € G such that Ax = Axy and Ay = Ay, and let
g € G. Then Azy(g) = A(gy 'z™') and Azoyo(g) = A(gyy 'z5?). On
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the other hand,

palgy 'zl = palgyy lvoy 'z

palgyy Loy tzoyoy ta 1)

v

nalgyy 'zo ) A palzoyoy 'z™1) (x)
(Since A € IFG(Q))

and

valgy'z™Y) = valgyy oy lz7h)

= valgyg ‘=g zooy 'z Y)
< valgyg tzgh) V va(zoyoy oY) (xx)

Since Az = Azp and Ay = Ayp, A(gr™!) = A(gxal) and A(gy™!) =
A(gyg!). In particular,

Alzoyoy~'27Y) = Alzoyoy'zg")
= A(yoy™!) (Since A € IFNG(G))
= Ale).

So (ma(zoyoy 'z™"), val(zoyoy 'z71)) = (uale), va(e)). By Result
1A pale) > uA(gyo_lxal) and v4(e) < z/A(gyO"largl). Thus, by (%) and
(),

1algy'z71) > palgyy x5 ) and va(gy ™

) < valgyy Lz3h).

By the similar arguments, we have that

1

palgyo tzgl) > palgy =™ and va(gyylzyt) < va(gy~leb).

So A(gygtzgt) = A(gy~'z™Y), ie., Azoyo(g) = Azy(g). Hence * is
well-defined. Furthermore, we can easily check that the followings are
true:

(i) * is associative.

(ii) Az~!is the inverse of Az for each r € G.

(iii) Ae = A is the identity of G/A.
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Therefore (G/A, *) is a group. This completes the proof.

Proposition 3.8. Let A be an IFNG of a group G. We define a complex

mapping A = (uz,vg) : G/A — I x I as follows : for each z € G,
A(Az) = A(z), ie., px(Az) = pa(z) and v3(Azx) = va(z).

Then A is an IFG of G/A. In this case, A is called the intuitionistic

fuzzy subquotient group determined by A.

Proof. From the definition of A, it is clear that A € IFS(G/A). Let
z,y € G. Then :

pg(Az+ Ay) = pz(Azy)
= pa(ry)
> pal(z) A paly)
= pz(Az) A pz(Ay)
and
Az * Ay) = vg(Azy)

= val(zy)
< va(z) Vvaly)

= vg(Az) v vz(Ay).
On the other hand,
px((Az)7Y) = pg(Az™h) = pa(z™') > palz) = pg(Az)
and
ir{(A2)Y) — vp(Aa~) = wa(e™) < vale) = vx(Av).

Hence A € IFG(G/A).
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Proposition 3.9. Let A be an IFNG of a group G. We define a map-
ping 7 : G — G/A as follows : for each x € G, 7(z) = Az. Then 7 is a
homomorphism with Ker(7) = G 4. In this case 7 is called the natural

homomorphism.

Proof. Let z,y € G. Then n(zy) = Azy = Az x Ay = w(z) * 7(y). So

7 is a homomorphism. Furthermore,

Ker(m) = {z € G:n(z)= Ae}
= {ze€G: Az = Ae}
= {ze€G: Az(z) = Ae(z)}
= {ze€G:Ale) = Alz)}
= Gy.

This completes the proof.

Now we obtain for intuitionistic fuzzy subgroups an analogous result

of the "Fundamental Theorem of Homomorphism of Groups”.

Theorem 3.10. Let A € IFNG(G). Then each intuitionistic fuzzy
(normal) subgroup of G/A corresponds in a natural way to an intuition-

istic fuzzy (normal) subgroup of G.

Proof. Let A" be an intuitionistic fuzzy subgroup of G/A. Define a
complex mapping B = (ug,vp) : G — I x I as follows : for each z € G,
B(z) = A*(Az).

By the definition of B, it is clear that B € [FS((). Let =,y € G. Then
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Il

pa-(Azy)
prax(Az * Ay)
pax(Az) A pa-(Ay) (Since A* € IFG(G/A))

ns(zy)

Vv

pa(z) A pp(y)

and

vg(zy) va-(Azy)
v+ (Az x Ay)

var(Az) V va-(Ay)

VAN

ve(z)V vp(y).
Since A* € IFG(G/A), A*(Az~!) = A*(Az). Thus :
B(z™Y) = (us(™h), ve™)) = (na-(Az™"), va-(Az™1))

= (ua-(Az), va-(Az))
(nB(z), vB(z)) = B(z).

Il

Hence B € IFG(G). 1t is easy to see that if B is an IFNG of G/A, then
B is an IFNG of G. This completes the proof.

Now we will obtain an intuitionistic fuzzy analog of the famous ”La-
grange’s Theorem” for finite groups which is a basic result in group
theory . Let A be an IFG of a finite group G. Then it clear that G/A
is finite.

Definition 3.11. Let A be an IFG of a finite group G. Then the car-
dinality |{G/A| of G/A is called the indez of A.
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Theorem 3.12(Intuitionistic Fuzzy Lagrange’s Theorem). Let A
be an IFG of a finite group G. Then the index of A divides the order of G.

Proof. By Proposition 3.9, there is the natural homomorphism 7 : G —
G/A. Let H be the subgroup of G defined by H = {h € G : Ah = Ae},
where e is the identity of G. Let h € H. Then Ah(g) = Ae(g) or
A(gh™!) = A(g) for each g € G. In particular, A(h~1) = A(e). Since
Ais an IFG of G, by Result 1.A, A(h) = A(e). Thus h € G4. So
H C G4. Now let h € G4. Then A(h) = A(e). Thus, by Result 1.A,
A(h™1) = A(e). By Lemma 2.2, A(gh™!) = A(g) or Ah(g) = Ae(g) for
each g € G. Thus Ah = Ae,ie., h€ H. So G4 C H. Hence H = G4.

Now decompose G as a disjoint union of the cosets of G with respect
to H :

G=HziUHzaU---UHuzp (% %)
where Hz, = H. We show that corresponding to each coset Hz; given
in (% * x), there is an intuitionistic fuzzy coset belonging to G/A, and

further that this correspondence is injective. Consider any coset Hzx;.
Let h € H. Then

w(hx;) = Ahz;, = Ah* Ax;
= Aex* ALL‘,’ = Al‘i.

Thus 7 maps each element of Hz; into the intuitionistic fuzzy coset Ax;,.
Now we define a mapping 7 : {Hz; : 1 <i < k} — G/A as follows : for
eachi € {1,2, - -, k},

7—T(H.Z‘i) = AIi.
Then clearly, 7 is well-defined. Suppose Ax; = Az;. Then

-1
Axz;x;— = Ae.

Thus :L'l-a:j"l € H. So Hx; = Hz;. Hence 7 is injective. From the above
discussion, it is clear that |G/A| = k. Since k divides the order of G.
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|G/A| also divides the order of G. This completes the proof.
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