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C*-ALGEBRAS OF SOME SEMIGROUPS

B. TABATABAIE SHOURIJEH

Abstract. In this paper the left regular representation and the
reduced C*-algebra for a commutative separative semigroup is de-
fined. The universal representation, the reduced C*-algebra and
the full C*-algebra for the additive semigroup N are given. Also
it is proved that C;(N7T) 2 C*(N™).

0. Introduction

Much work has been done on the C*-algebras of groups, but much
less on the C*-algebras of semigroups. The idea of the left regular rep-
resentation of a non-involutive semigroup > which is the first step in
defining the reduced C*-algebra of 3, has not been considered yet. This

paper studies those for a commutative separative semigroup (C.S.S.).
Perhaps it is worth noticing that, the existence of an equivalence re-

lation ” ~” on a commutative semigroup Y, and the fact that ; is the
maximal semilattice homomorphic image of Y ([1, Theorem 4.12}) first
appeared in [11] from which it follows easily that: any commutative
semigroup Y (separative or not) is uniquely expressible as a semilat-
tice of “archimedean” semigroups ([1, Theorem 4.13]). Except for the

uniqueness, this fact is also essentially due to [10], who showed that:
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any commutative semigroup ) is a disjoint union of archimedean semi-
groups. Later on, Hewitt and zuckerman in [7] used this fact and showed
that, the characters of a commutative semigroup 3 separate the ele-
ments of Y if and only if 3 is separative. Based on the above fact
Dunkl and Ramirez in [4] initiated a kind of plancherel theorem for
inverse semigroups.

In section 1 of this paper a commutative semigroup will be written as
a disjointunion of its cancellative subsemigroups. Based on this fact we
will define the left regular representation of a C.S.S., and show that this
representation is faithful. At the end of this section concrete examples
of C.5.S.’s, their decompositions and their left regular representations
are given.

Section 2 is devoted to the reduced C*-algebra of N and its minimal
ideals.

In section 3 we will define representations, the universal representa-
tion, and the full C*-algebra of N*. Also, it will be shown that, the
C*-algebra C*(S & S*) can have the identity element.

Section 4 deals with the determination of the minimal ideals of C*(S®

S*). At the end of this section by a comparison between the minimal
ideals of the C*-algebras C*(N*) and C*(S @ S*) we conclude that

CH(N*) # C*(N*).

1. The left regular representation of a commutative sepa-
rative semigroup

A semigroup ) is called separative if for every s,¢ in )
s% = st =t

implies s = t.
Throughout this section, unless otherwise specified, Y will denote a

commutative separative semigroup (C.S.S.).
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In this section we will define an equivalence relation on > and show
that each equivalence class is a cancellative subsemigroup of > . By the
decomposition of Y under this equivalence relation we will define the left
regular representation of Y  and it will be shown that this representation
is faithful.

We begin with a basic definition.

Definition 1.1. For each s in ), the set

hs ={t € :t" = su and s™ = vt, for some u,v in Y and m,n in
N} is called an archimedean component of » .

Now we state an important theorem on which this section is based.

Note that other versions of this theorem can be seen in 1] and [7].

Theorem 1.2 (a) The relation s ~ t if and only if ¢t € h; is an equiva-
lence relation on > [4, propsition 3.3];

(b) If s € Y, then h; is a subsemigroup of ¥ [4, proposition 3.4];

(c) Each hy is a cancellative subsemigroup of > [4, Theorem 3.5].

Note that by part (a) of the above theorem, for every Y we can write

S=Uh

Se3°
Moreover, cancellative property of each hs is among the necessary tools
in considering the properties of the left regular representation of >_.
At this stage we proceed to introduce a candidate for the left regular
representation of ) .
Let {6; : t € 3_} be the standard orthonormal basis for £2(37). To
each s € 3 we associate the linear operator A(s) on £2(3") such that

6 i ste ht

0 otherwise.

(T) A(s)or = {

We consider the properties of X in the following lemmas.
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Lemma 1.3. If we correspond to each s € 3, the linear operator A(s)
such that (I") holds, then

Ars) = AMr)A(s)

for every r,sin ).

Proof. If t € 3, then
/\(TS)(St = 67‘st

if and only if rst € hy.
And,

/\(T))\(S)(St = /\(T‘)(Sst = 67‘st
if and only if
st € hy and rst € hg.

Therefore in order to show that
A(rs) = Mr)A(s)
it is enough to prove that,
rst € hy if and only if st € h; and rst € hg;.

To see this, from st € h; and rst € hy, we have

t ~ st and st ~ rst.
Now since ~ is an equivalence relation on ) we have

t ~rst or rst € hy.

Conversely let rst € hy;. Hence
(rst)" = ut and t™ = v(rst)

for some u,v in ) and m,n in N. Since
(1) t™ = v(rst) = (vr)(st)

we have
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(2) (ts)™ = t™s™ = sTw(rst) = (s™Flur)t.

From (1) and (2) we see that
st € hy.
Now from rst € h; and st € h; it is easily seen that
rst € hg.[d

The following lemma shows that each A(s) is a partial isometry. (Par-

tial isometry and its properties are considered in [9, ch.6]).

Lemma 1.4. For s € ), the linear operator A(s) which is defined in

(T") is a partial isometry.

Proof. Let s € ) and

Dy={te) :steh}

We will prove that each \(s) is a partial isometry with the initial

space £2(D;). It suffices to show that the map
t— st

is injective on Dy.

Let t1,t2 € D, and st; = sty. Since st1 € hy, and sty € hy,, from
t] ~ sty = sty ~ to
we have t; € hy,. Therefore h;, = hy,. Hence
sty = sty € hy,.

Since hy, is a cancellative semigroup form sty = sty we have ¢y = to.l]

By Lemmas 1.3 and 1.4 we have the following definition.
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Definition 1.5. Let )  be a commutative separative semigroup. For
each s € Y, the linear operator A(s) on £2(3") defined by,

0t ifst€h
/\(s)ét:{ t Usten

0  otherwise,

is the left regular representation of > .

Examples 1.6.
(a) Let > be the additive semigroup

zt={0,1,2,3,---}.
obviously Z* is separative, hg = {0},h; = {1,2,3,---} and
zt = ho U hq.
A:Zt — PI({2(Z%)) by
6m n if hn
Am)d, = +n MUmM+nE
0 otherwise
is the left regular representation of Z*. It is easily seen that A(0) =
I,\(1) = &' is a partial isometry with the initial space £2(N*), and
A(m) = A1) = ()™
(b) Let > be the additive semigroup N* = {1,2,3,---}. obviously
hi1 = N and,
A: NT — PI(f?(NT)) defined by
A(m)dn = dman
is the left regular representation of N*. Clearly A(1) is a shift of multi-
plicity one and
Alm) = A1) = ST*

We close this section by proving that, the left regular representation

of a commutative separative semigroup is faithful.
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Theorem 1.7. If }_ is a commutative separative semigroup and A its

left regular representation, then A is faithful.

Proof. Let 51,52 € Y and A(s1) = A(s2). Since each A(s) is a partial
isometry with the initial space ¢?(D;) where

Dy={te> :steh},
from A(s1) = A(s2) we have Dy, = Ds,.

Since s? € hy, we see that
1 1

81 € D5, = Ds,.
From s; € Dy, we have
§281 € hg,.
Therefore
A(81)0s, = A(s2)ds,
or,

S% = §182.
Since hs, is a cancellative semigroup and
S% = 8182 € h31

we have 81 = 59 i.e., X is faithful. [
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Conclusion 1.8.

(a) For a given commutative separative semigroup ) we can define its
reduced C*-algebra, C}(>") as follows:

CIQ ) =C ({As) Ms) s € D))

where A is the left regular representation of 3.
(b) If D is a commutative cancellative semigroup, it is obviously a sep-

arative semigroup, therefore we can consider its reduced C*-algebra,

cr (D).
2. The reduced C*-algebra of N* Cr(NT)

The additive semigroups Z* and Nt are commutative and separa-
tive. In this section, first we will introduce C;(Z™), then we consider
C*(N™) and its minimal ideals.

As we showed in section 1, A the left regular representation of Zt is
defined by

5m n f hn
M)y = 4n Itm+ n €
0 otherwise

where m € Z* and {6, : n € Z*} is the standard orthonormal basis for
the separable Hilbert space H = ¢2(Z1). It is obvious that A\(0) = I is
the identity operator on H and A(1) = 5’ is a partial isometry with the
initial space H; = ¢2(N71); that is, with Hy = HOHy, we have SN, =0
0 if n=0

A . ; and
Onyr if n>0

and S'|y, is a unilateral shift. Thus S'(d,) = {

by 1.8
CHZY) = C*({I, \(1)", (M1)*)* : n € N}).
Here we will consider the reduced C*-algebra of N* Cr(N*). By
1.6(b), X the left regular representation on N1t is given by A(m)d, =

Oman wherem € Nt and {6,, : n € N} is the standard orthonormal basis
for the separable Hilbert space Hy = €2(NT).A(1) = S is a unilateral
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shift on H; and by 1.8
C/(NT) =C({x1)", (M1)")* : n € N})

is nothing but the C*-algebra generated by S; and S7.

In order to have a better understanding of C(N*), let us introduce
another C*-algebra which is isometrically *-isomorphic to C}(N*).

Let S be the unilateral shift operator. Also, let C*(S) be the C*-
algebra generated by S and S*. In fact if p(z,y) is a polynomial in two
non-commuting variables x, y with complex coefficients i.e.,

p(:v, y) = Z ailiz'“ik‘rilyiz o 'yik
finite
then C*(S) is the norm closure of all polynomials p(S, S*).
Now we will show that C*(S) = C}(N™).
Let H = ((Z*) and H, = ¢*(N*). The operator T : Hy — H

defined by T'6,, = dp—1, (n € N), is a unitary; and since T*ST(>_ £;0;) =
j=1

(0,&1,&2,---) = S1(> &9;) the mapping
j=1
S «—T*ST

induces an isometric *-isomorphism between C*(S) and C*(N ™).

Remark. By the above argument we may assume that (up to isomor-
phism), Cr(N™) is generated by {S,S*}. Note that this remark will be

used in sections 3 and 4 without any comment.

Since one of the main objectives of sections 3 and 4 is the comparison
of C}(N7T) and C*(N*), and the easiest way to achieve this goal seems
to be the determination of their minimal ideals, the rest of this section
will be devoted to the determination of minimal ideals of C(NT).

We start by sorting out some notation.

Let H = ¢2(N*). The orthogonal projection onto the one dimen-

sional subspace of H spanned by 4, is denoted by P,. For r,y € H, the
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linear operator Ty, , : H — H, is defined by
Ty.(z) =<z,y>=z2

where < .,. > is the inner product in H, is a rank one operator. If
T is a finite rank operator on H, then there are orthonormal vectors

01,02, -+, 0, and vectors y1,ys,- -+ ,yn such that

Tx=2<$,5i>yi
i=1
forall z € H.
If

I ={T € B(H): T is a finite rank operator}

then I is a two-sided ideal in B(H). It is well known tht every non-
zero two-sided ideal in B(H) contains I; and k, the ideal of all compact
operators on H is the norm closure of the ideal I in B(H).

An operator T on a Hilbert space H has a cyclic vector e if the
vectors e, Te, T?e, - -- span a dense subspace of H. Equivalently e is a
cyclic vector for T in case the set of all vectors of the form p(T')e, where
p varies over all polynomials, is dense in H. The unilateral shift operator
S restricted to €2(N*) has a cyclic vector i.e., d;. By [5, prob. 160] S*

has cyclic vector.

CONVENTION. In this section, by S we mean, the restriction of S
to £2(N1), or Sy, or the unilateral shift operator on 2(NT).

The following lemma shows that, there exists a nontrivial closed two-
sided ideal in C*(NT).

Lemma 2.1. C(N™") has nontrivial closed two-sided ideal.

Proof. Since C}(N1) is generated by S, we have

§*S — 88* =1 - 85" € CI(N™).
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From
(I—SS*)(§1a£27£33"') = (617623"') —5(527€3a"')
= (517627"') - (O)§2a£3a"') = (5170107“')
= Pl(éla&?v"')a
we see that
I-S85" =h.

Since P; € k we conclude that
Py =5*S—SS*cknNCr(NT).
Therefore at least kN C*(N*) is a nontrivial closed two-sided ideal in

Cx(N*). O

Lemma 2.2. If J is a nontrivial closed two-sided ideal in C;(N), then
PeJ.

Proof. Since J is a nontrivial ideal it has a non-zero element, say A.
So there exists m € Nt such that
|| Adpm [ # 0.
From,
SRS &2y ) = ST PEm G )

:Sm—l(E’n’HO?O’.”) = (0707"'0,5771,0’0;".)
we see that

valpl(S*)m—l — Pm‘
Since J is an ideal and P,, € C;(N™), we have

PoA™AP,, € J.
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Now for any z = (£1,&2,€3,-++) € ¢2(N*), we have

o0
PpA"APnz =Y < PpA"APpz,8, > 0 =< PpA*APpnz,bp > b,
n=1
=< APpz, A > O = Em < Abp, Abry > 6 = || A ||* Pt
ie.,

PLA*AP,, = ||Abp||* Py

Therefore P, € J and consequently
(8™ 1P, s™ 1 = P e JOd

In the light of the following lemma we can detremine the minimal
ideals of C¥(N).

Lemma 2.3. Any nontrivial closed two-sided ideal in C¥(N ™) contains

I, where I is the ideal of all finite rank operators.

Proof. Let J be a nontrivial closed two-sided ideal in C*(N7T). It
sufices to prove that

T,.eJ

for all ¥,z € £2(N*). Since 4, is a cyclic vector for S for given y, z in

£2(N*) and € > 0 there are polynomials p, ¢ such that
lp(S)d1 — yll < e and [[g(S)d — z|| <e.
Now
IAp(S)]" = Tysll = sup{||PA[p(S)]"z— < 2,y > ]| : [|z|| < 1}
= sup{|| <p(S)'z,61 > 61— < z,y > &l : ||z]| <1}

sup{|| < z,p(S)41 > d1— < z,y > & : ||z]| <1}

sup{|| < z,p(5)0r —y > &1f| : [|z]| <1}
lp(S)o1 — yll <e.

I

IN
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By lemma 2.2, PieJ therefore P;[p(S)]* € J.

From
1Prp(S)]" — Tyall <e
we see that
Tys €J.

Since
19(S)Ty,5, — Ty,zll = sup{[lg(S) < z,y > 61— < z,y > 2|| : [|z]| <1}
= sup{|| < z,y > (¢(5)d1 — 2)|| : [|z[} < 1}
< [lg(8)d1 — 2l Iyl < ellyl]
from Ty 5,¢J and [|q(5)Ty5, — Ty 2| < elly]l

we see that
T,.€JO

The following theorem determines the minimal ideals of C}(N*).

Theorem 2.4. k, the ideal of all compact operators on ¢2(N7) is the

unique minimal closed two-sided ideal in C}(N™).

Proof. Let J be any nontrivial closed two-sided ideal in C}(N*). By
lemma 2.3 we have I C J where I is the ideal of all finite rank operators
on £2(N¥).

Since k =T and T C J we have

kCJ

Therefore k i1s minimal. O
3. The full C*-algebra of Nt , C*(N™)

In this section, first we define the universal representation of N*
then consider its full C*-algebra, C*(N*), and show that the C*-algebra
generated by S @ (S*)9 has the identity element.
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The existence and properties of p.p.i.’s (power partial isometries)
were discussed in [6]. Therefore let V be a p.p.i. on Hy. For given
m,n in N, V™ V" and V™V" = V™" are partial isometries. Thus
Y v ={V™:n € N} is a semigroup of partial isometries generated by V.
The additive semigroup N7 is generated by 1. The mapping n — V" is

a one-to-one correspondence between the semigroups Nt and 5. These
v
observations show that we can represent N as a semigroup of partial

isometries on some Hilbert space Hy. Inspired by the above facts we
begin to define the represenations of NT.

Let V be a p.pi. on Hy. We define my : Nt — PI(Hy) by
nv(n) = V™. Obviously, 7y represents N* as a cyclic semigroup of

partial isometries generated by V on Hy, or
Z:{V":n€N+}.
%

We call (my, Hy) a representation of N*. Thus for each p.p.i., say V,
on Hy, we have a representation (my, Hy) for N*.
Here we wish to prepare the grounds to define the C*-algebra of N*.

We start with a lemma.

Lemma 3.1. Every unitary operator is the direct sum of unitary oper-

ators acting on separable Hilbert spaces.

Proof. Let U be a unitary on an infinite-dimensional Hilbert space
H. Choose £ € H such that ||| = 1. With By = {U"¢ : n € Z},
take Hy = SpanBy (The closed linear span of By). The Hilbert space
Hy is separable; and leaves U, U” invariant (Hy reduces U). Thus we
have H = Ho ® Hg"; and with Uy = U|y,, we can write U = Uy @ U,
Now let M be the collection of all X such that X is a set of mutually
orthogonal separable subspaces of H which reduce U (i.e., each element
of X reduces U). Set inclusion defines a partial ordering on M. Every

linearly ordered subset Y of Al has an upper bound, namely, the union of
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elements of Y. By Zorn’s lemma, M has a maximal element, say {H},
where v runs over some index set. Now the closed space K spanned by
U, H, is H. If not, we have Kl = ﬂH# # {0}. Take a unit vector 7
in K+ and apply the construction at the start of the proof; hence there
would exist a separable Hilbert subspace in K=, that could be added
to the collection {H,}, contradicting the maximality of {Hy}. Thus
K+ = {0}; and the closed linear space generated by {H,} is H. That is

H=®,H,, and U =6,U,.00

Remark. Let W = {w : w is a unitary operator on a separable Hilbert

space}, and V = @ w. Each U, of the preceding lemma is an ele-
weW

ment of W. Hence U, ~ Vlsubspaceg Hy and ®,U ~ ®7V|subspace -
Vélsubspacegea,; p, Where ¢ is the cardinal number of the set of v's.

The following lemma. is quite useful for our purpose.

Lemma 3.2. Let A be an index set. If for v € A, T, € B(H,), then
OTy ~ Ou(®Tv)lgyitable subspace) Where T denotes T, acting with
multiplicity a, on ®q,H,, and @ = max{a, : v € A}.

Proof. Let H = ®y(®a,Hy), K = ©u.(®,H,). With ¢€®) ¢ H,,
and (§§-v))au € ®q, H,, define U : H — K by letting U((ﬁj(v))av)v =
((5](.”))1,)“, where in ((§](.v))v)ﬂ we take §§-v) =0 for j € (ay, u]. Clearly U
is a unitary from H onto M=range U, where
M = ®,(®,H,) in which H, = {0} on (o, p}.

If A=@,T0, and B = ©,(D,Ty), then
U= BU((€)a,)o = U BUE ) = UG8 ")) = (T )ar o =
A((ﬁ;v))av)v; and M is the required suitable subspace. O

Now the grounds are ready for defining the C*(N1).

Let T be a p.p.i. By the theorem of [6] and lemma 3.1

T~ ®,U, & S*® (S) & B2, NO*
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where U = @U, is the unitary summand of T. By lemma 3.2 and its

preceding remark

T~®u(VeSoS @aLNk)lsuitable subspace

in which p = sup{d, o, 8, a5} (compare with the decomposition of a
non-degenerate representation of a C*-algebra as a direct sum of cyclic
representations). We take V @ S @ S* @ ®72, Ny as the building block
for representations of N*; (in analogy with cyclic representations for

C*-algebras) Define a representation 7 of N* by
(1) =V & Se S ® i, Ny.

we call 7 the universal representation of N*. (Note that any represen-

tation of N* can be identified with a subrepresentation of a direct sum
of copies of the universal representation). We define the C*-algebra of
N7 as follows:

C* (NN =C (VeSS ®a Nk

One of the most interesting results in the amenability theory is that
for an amenable group G the reduced C*-algebra of G, C}(G) which is
generated by the left regular representation of GG is canonically isomor-
phic to the full C*-algebra of G, C*(G) (see [2, Th. VII1.2.8]). But in the
theory of the amenable semigroups such theorem does not exist. obvi-
ously because it seems impossible to define the left regular representation
for a general semigroup.

For the additive semigroup N*t, we defined the left regular represen-
tation and we constructed the C*-algebras C*(N*) and C*(N*). By
[3, sec. 4, (H)], Nt is an amenable semigroup. Therefore the following
question arises.

Is the reduced C*-algebra of N* isomorphic to the full C*-algebra of
NT?

The answer is no. To see this let us compare C7(N*) with C*(S* @

(S*)d).
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We know that C;(N7) is a C*-algebra with the identity element.

simply because
I=58"SeCiHNT).
Therefore in comparing C;(N*) with C*(S* @ (5*)?) the first question
is:
Is C*(S* & (S5*)P) a C*-algebra with the identity element?
The answer is yes, and we will prove it in the rest of this section.

First of all we require the following lemma wich may be of some in-

trinsic interest.
Lemma 3.3. C*(S* @ (S*)ﬁ) =C*(S® S").

Proof. Let T = (S*)?. The mapping
ST ->SeT

extends to the polynomials in (S* & T), (S @ T)* with complex coeffi-

clents, i.e., to

PIS*OT), (S*BT)) = 37 aiigin (S*@T)H((S*OT)*)2 - ((S*
' finite

T)" )i,

by [8, sec. 2.6] we have

22 Biyip iy (ST O T) (ST @ T)7)2 - - ((S* @ T*)ik =

(2 @iy i (SO)((ST)®)2 - ((S)™) %)X Qayigeriy, THT™)2 - - (T)i)

=p(S%(S)") @ p(T,T7),
and similarly
p((S®T),(S®T)") =p(S,S*) & p(T,T*).
we see that

p(S%(S)) @ p(T.T") ~ p(S,S*) & p(T.T").



500 B. Tabatabaie Shourijeh

Therefore the extension is an *-homomorphism. Since

Ip(S*, (S @p(T, T =1l B »(S.5")@p(T, 177

a copies

= [[p(S,87) @ p(T, T7)Il.

The mapping extends to an isometry from C*(S* @ (S*)?) onto C*(Sa
(5)P).
Similarly the mapping

S®(S*)Y -5 S
extends to an isometry from C*(S® (S*)P)) onto C*(S® S*). Therefore
C*(S*® (S = C* (S® (§*)7) ~ C*(S®S*).

This completes the proof. O
Now we will show that C*(S @ S*) has the identity element.

So far, we have seen that
m((S @ S*),(S® S*)*) =m(S, S*) & m(S”, S)
and
p((S® S7),(S®S5%)") =p(S,5%) & p(5*,S))

where m(z,y) is a monomial in two free variables, z, y.

Inspired by the preceding fact, the following definition is made.

Definition 3.4. We call p(S, S*), [p(S*, S)] the twain of p(S*, S), [p(S, S*)]
in p((S @ S*), (S® S*)*) and similarly m(S, S*), [m(S*, 9)] is called the
twain of m(S5*, 5), [m(S,S*)] in m((S & S*), (S © §*)*).

The next lemma is quite useful.

Lemma 3.5. Let m(z,y) be a monomial in two free variables z,y. If

m(z,y) ends with y, then m(S, S*) cannot be the identity operator.
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Proof. Suppose
m(S,S*) = §(8*)28% ... (§*)*
where i, > 1. Take

6 = (é()a{la{?)é&" : 7fik—150705"')

in which at least one of the &,&1, -, &, -1 is different from zero. Then
m(S’ S*)é- = Sil(S*)iZSis e Sik(s*)ik(&]’gla o '£ik—1a O’ 0’ . )

___Si}(s*)izsia_”Sik—-l(o’O,O,... ’0,0,...) = 0.

This shows that m(S, S*) is not the identity operator. Hence the lemma
is proved. O
The next result, presented with proof, is an easy consequence of the

above lemma.

Corollary 3.6. For every monomial m(z,y) in two free variables z, v,

we have
m(S,S") em(S*,S)# I I.

Proof. If m(S, S*) ends with S*, by 3.5 it is not the identity operator.
If m(S,S") ends with S, then its twain m(S~,S) will end with S* and

consequently is not the identity operator. Thus in any case
m(S,S*)em(S*,S) A I 1.

and this completes the proof. [J

Now 5*§ is the identity operator, but its twain i.e., §5* is not. There-
fore if we want the twain of a monomial to become an identity at least
it must end with S*. For example §5*55* is a monomial whose twain
ie., §*§5*S is the identity operator.

It is obvious that the polynomial

S*S+855°88”
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is not the identity operator, but a part of its twain i.e., S*55*S is the
identity. Thus if we can add a monomial m(S,S*) to S*S + SS*SS*
such that

(a) S*S+ 55*55* + m(S,5*) = S*S
and
(b) SS§* + §*SS*S + m(S*,S) = S*SS*S
then we will have
(S*S +85*SS*+m(S,5%))® (SS* + S*SS*S+m(S*,S)) =TI
By (a) and (b) we must find m(S, S*) such that

S5*SS* +m(S,S*) =0
SS* +m(S*,S) =0

Since

SS*SS*(EOafl’ééﬂ”') = (0’61’52753"”)

and

S(S*)2S(§Oa£17€27 o ) = (07615625635 o )
if we take m(S,S*) = —9(S5*)2S then

S55*SS* — S(5*)2S =0
and
SS* - §°528* =0
This shows that
(S*S + S5*S5* — S(5*)2S) @ (SS* + S*S55*S — §*S25" )y =TI @ I

We can summarize our results in the following theorem.
Theorem 3.7. The C*-algebra C*(S @ S*) has the identity element.

4. The minimal ideals of C*(S" @ (S*)%)
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In section 3 we defined the full C*-algebra of N* , C*(N™); and that
is the C*-algebra generated by

VeS®S Sar,N.

In this section we will determine the minimal ideals of C*(S @ S*),

and will prove that
Cr(NT)# C*(N™).
Remember that we continue to assume that S is the unilateral shift

operator and S*, the adjoint of S is the backward shift operator.

We start with the following lemma.

Lemma 4.1. The C*-algebra C*(S & S*) has a nontrivial closed two-
sided ideal.

Proof. The following simple calculations show that
(kok)ynC*(S® S*)
is non empty.
(SeS ) (SeeS*)—(SeS )N SeS") e C (S S™).
On the other hand by (8, sec. 2.6] we have
(SeS ) (SeS)~-(SeS)SeS") =(S"SeSS™) - (SS*"d S*S)
=(§"S - 55") @& (85" - 5%9),
since
(S*S—-SS")a(SS*—-S5*S) =Py (—PR)ckdk
where k is the ideal of all compact operators on £2(Z%), we see that
Poo(-P)ekok)ynC*(Se S).

Therefore at least (k & k) N C*(S @ S*) is a nontrivial closed two-sided
ideal in C*(S & §*). O



504 B. Tabatabaie Shourijeh

The following lemma is quite useful for our purpose.

Lemma 4.2. If J is a nontrivial closed two-sided ideal in C*(S & S*)
then

Poyg0eJ or 0pPye
Proof. For m > 0 by [8, sec. 2.6] we have
(S®S)™(Po® (—P)((S® §)")™ = S™Py(§")™ & (S*)™(—Pp)S™
=FP,00€C* (S 5
and
(S S))™(~Po® Po)(S® 5)™ = (S*)™(=Po)S™ @ ST Py (S*)™
=00 FP,cC*"(SaS").

Now let J be a nontrivial closed two-sided ideal in C*(S® S*). Hence
there exists a non-zero element, say C, in J. Let C = A® B. If A #£ 0,
then for some N > 0 we have Ady # 0. Since A@ B € J Pyv®O0 ¢
C*(S @ S*) and J is an ideal we see that

(PNn®0)(A® B)"(A® B)(Pv®0) = PyA*APy &0 € J.
By the similar argument used in the proof of lemma 2.2, we have
Py A*APy = || Adn||*Pn.

Hence
Py ®0 = ||Adn||2PyA* APy ®0€ J
Thus

(S®8))"(Py@0)(SeS)V =(S)"PySYN @0=PFo0eJ
If B # 0 similar argument shows tht
0p Pye J

This completes the proof. O
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The following theorem determines the minimal ideals of C*(S & S*).

Theorem 4.3. k@0 and 0§ k are two minimal closed two-sided ideals
in C*(S & S*).

Proof. Let J be a nontrivial closed two-sided ideal in C*(S @ S*).
Since S and S* have cyclic vectors by an argument similar to the proof
of lemma 2.3, we see that J contains either all operators of the form

T,.. @ 0 or all operators of the form
0Ty,
where y,z € 2(Z*), and
Ty .(z) =< z,y > 2.

Since k is the norm closure of the ideal of all finite rank operators, we
see that
either k@0 C Jor 0p k C J. Since J was arbitrary, the theorem is
proved. (I

Now it is time for making a comparison between the reduced C*-
algebra of N* and the full C*-algebra of N1 and get an important

conclusion.
Corollary 4.4. C;(N*t) £ C*(N™).

Proof. C*(Nt) =C* (V& S@ S*® &2 ,Nk). Hence C*(N*) is a
C*-subalgebra of B(H) where H = Hy ® Hg @ Hg» ® ®2 ,Hy,. The
inclusion mapping from C*(N*) into B(H) is a faithful representation
of C*(N*) on H. For each A € C*(N™), the mapping

A— A|H5@H5* : C*(1V+) — B(HS @ HS*)
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is a representation of C*(N*t) on Hg @ Hg-. By this representation the
generator of C*(N7) is mapped to S @ S*. Hence

(%) C*(S ® S*) ¥ a quotient of C*(NT).

By 4.3 the left hand side of (*), and consequently C*(N™*) has at least
two minimal ideals. Since by 2.4 C}(N*) has a unique minimal ideal,
the proof is complete. [

We can summarize the result of this section in the following conclu-

sion.

Conclusion 4.5. The well known theorem ([12, Th. 6.3.3]) which says

that, if G is an amenable group, then
Cr(G) = C7(G)

does not hold for the amenable semigroup N*.
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