COXETER ALGEBRAS AND PRE-COXETER ALGEBRAS IN SMARANDACHE SETTING

HEE SIK KIM¹, YOUNG HEE KIM^{2,*} AND J. NEGGERS³

Abstract. In this paper we introduce the notion of a (pre-)Coxeter algebra and show that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. Moreover, we prove that the class of Coxeter algebras and the class of *B*-algebras of odd order are Smarandache disjoint. Finally, we show that the class of pre-Coxeter algebras and the class of *BCK*-algebras are Smarandache disjoint.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([5, 6]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [3, 4] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. Recently, Y. B. Jun, E. H. Roh and H. S. Kim ([7]) introduced a new notion, called a BH-algebra, i.e., (I), (II) and (V) x * y = 0 and y * x = 0 imply x = y, which is a generalization of BCH/BCI/BCK-algebras. They also defined the notions of ideals and boundedness in BH-algebras, and showed that there

Received September 11,2004; Revised October 25,2004.

AMS Mathematics Subject Classification: 06F35.

Key words and phrases :Coxeter algebra, pre-Coxeter algebra, *B*-algebra, 0-commutative.

^{*} Supported by Chungbuk National University Fund, 2004.

is a maximal ideal in bounded BH-algebras. J. Neggers and H. S. Kim ([10]) introduced and investigated a class of algebras which is related to several classes of algebras of interest such as BCH/BCI/BCK-algebras and which seems to have rather nice properties without being excessively complicated otherwise. Furthermore, they demonstrated a rather interesting connection between B-algebras and groups. P. J. Allen et al. ([1]) included several new families of Smarandache-type P-algebras and studied some of their properties in relation to the properties of previously defined Smarandache-types. In this paper we introduce the notion of a (pre-)Coxeter algebra and show that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. Moreover, we prove that the class of Coxeter algebras and the class of B-algebras of odd order are Smarandache disjoint. Finally, we show that the class of pre-Coxeter algebras and the class of B-algebras are Smarandache disjoint.

2. Coxeter algebras

A Coxeter algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

- (I) x * x = 0,
- (II) x * 0 = x.

(III)
$$(x * y) * z = x * (y * z)$$

for any $x, y, z \in X$. Coxeter algebras are special types of semigroups. An example of a Coxeter algebra is a Klein 4-group (see Theorem 2.3).

Proposition 2.1. If (X; *, 0) is a Coxeter algebra, then 0 * x = x for any $x \in X$.

Proof. For any $x \in X$, we obtain x = x*0 = x*(x*x) = (x*x)*x = 0*x.

Proposition 2.2. If (X; *, 0) is a Coxeter algebra, then the cancellation laws hold.

Proof. By Proposition 2.1 we have y = 0 * y = (x * x) * y = x * (x * y). Similarly, z = x * (x * z). If x * y = x * z, then we obtain y = z which shows that the left cancellation law holds. On the other hand, since y = (y * x) * x and z = (z * x) * x for any $x \in X$, it follows that the right cancellation law holds.

Theorem 2.3. If (X; *, 0) is a Coxeter algebra, then it is an abelian group all of whose elements have order 2, i.e., a Boolean group, and conversely.

Proof. First, we show that every element x of X has a right inverse. For any $x \in X$, let $y \in X$ such that x * y = 0. Since x * x = 0, we have x * y = x * x. By Proposition 2.2, we have x = y, i.e., every element of X has a self-inverse. Moreover, the axiom (I) means that the order of $x \in X$ is 2, and hence (x * y) * (x * y) = 0 for any $x, y \in X$. This means that

$$y = 0 * y$$
 [Proposition 2.1]

$$= [(x * y) * (x * y)] * y$$

$$= (x * y) * [(x * y) * y]$$

$$= (x * y) * [x * (y * y)]$$

$$= (x * y) * (x * 0)$$

$$= (x * y) * x$$

Multiplying x to the right side, we have

$$y * x = [(x * y) * x] * x$$

= $(x * y) * (x * x)$
= $x * y$,

proving that (X; *, 0) is abelian. The converse is trivial, and we omit the proof.

3. Coxeter algebras and B-algebras

J. Neggers and H. S. Kim introduced and investigated a class of algebras, called a B-algebra, which is related to several classes of algebras such as BCH/BCI/BCK-algebras. A B-algebra ([10]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms: (I), (II) and (IV) (x*y)*z=x*(z*(0*y)), for any $x,y,z\in X$.

Proposition 3.1. If (X; *, 0) is a Coxeter algebra, then it is a B-algebra.

Proof. For any $x, y, z \in X$, we have

$$(x*y)*z = x*(y*z)$$
 [(III)]
= $x*(z*y)$ [Theorem 2.3]
= $x*(z*(0*y))$ [Proposition 2.1]

Theorem 3.2. ([10]) Let (X; *, 0) be a *B*-algebra. If $(X; *, 0) \rightarrow (X; \circ, 0)$, i.e., if $x \circ y = x * (0 * y)$, then $(X; \circ, 0)$ is a group.

Moreover, given a group $(X;\cdot,e)$, if we define $x*y:=x\cdot y^{-1}$, then (X;*,0=e) is a *B*-algebra. We define $x\circ y:=x*(0*y), x,y\in X$, and

we denote

$$x^n = \underbrace{(((x \circ x) \circ x) \circ \cdots) \circ x}_{n}$$

Proposition 3.3. Let (X; *, 0) be a Coxeter algebra. Then it cannot contain a B-algebra (X; *, 0) which contains an element of the prime order $p (\geq 3)$.

Proof. Assume X contains a B-algebra (Y; *, e). Then e = x * x = 0 for any $x \in X$. Let $x \in X$ be an element of the prime order $p \geq 3$. Then $(< x >, \circ)$ is a cyclic subgroup of the prime order $p \geq 3$ of the derived group $(Y; \circ, 0)$, where $x \circ y = x * (0 * y)$. By applying Proposition 2.1 we obtain

$$x^n = \begin{cases} x, & \text{if } n \text{ is odd,} \\ 0, & \text{if } n \text{ is even} \end{cases}$$

Thus $0 = x^p = x$, a contradiction.

Corollary 3.4. Let (X; *, 0) be a Coxeter algebra. Then it cannot contain a B-algebra $(X; \circ, e)$ such that |X| = 2n + 1 is odd.

Proof. Assume it has a *B*-algebra $(X; \circ, e)$ where |X| = 2n + 1 is odd. Then, by Proposition 2.1 and Theorem 3.2, $x \circ y = x * (0 * y) = x * y$. In particular, $x \circ x = x * x = 0$ for any $x \in X$. Hence the cyclic group $(X; \circ, e)$ is of order 2. By the Lagrange theorem, o(x) = 2 |2n + 1| = |X|, a contradiction.

Theorem 3.5. Let (X; *, 0) be a B-algebra and |X| = 2n + 1 where n is a natural number. If (C; *, e) is a Coxeter algebra with $C \subseteq X$, then |C| = 1.

Proof. For any $x \in C$, 0 = x * x = e, i.e., 0 = e. If $x \neq 0$ then x * x = 0 and $x = x^{-1}$, by Lagrange theorem, o(x) = 2 ||X| = 2n + 1, a contradiction. Hence o(x) = 1 and x = 0, i.e., |C| = 1.

Let (X, *) be a binary system/algebra. Then (X, *) is a $Smarandache-type\ P-algebra$ if it contains a subalgebra (Y, *), where Y is non-trivial, i.e., $|Y| \geq 2$, or Y contains at least two distinct elements, and (Y, *) is itself of type P. Thus, we have $Smarandache-type\ semigroups$ (the type P-algebra is a semigroup), $Smarandache-type\ groups$ (the type P-algebra is an abelian group). A $Smarandache-type\ abelian\ group$ in the sense of K and K and K and K are of course a larger class than K and K and K and K are of course and K are of K are of K and K are of K and K are of K are of K and K are of K and K are of K and K are of K are of K and K are of K are of K are of K and K are of K are of K are of K and K are of K and K are of K are of K and K are of K are of K are of K and K are of K are of K are of K are of K and K are of K are of K are of K and K are of K and K are of K are of K are of K and K are of K and K are of K are of K are of K are of K and K are of K and K are of K are of K are of K and K are of K and K a

Given algebra types (X, *) (type- P_1) and (X, \circ) (type- P_2), we shall consider them to be *Smarandache disjoint* ([1]) if the following two conditions hold:

- (A) If (X, *) is a type- P_1 -algebra with |X| > 1 then it cannot be a Smarandache-type- P_2 -algebra (X, \circ) ;
- (B) If (X, \circ) is a type- P_2 -algebra with |X| > 1 then it cannot be a Smarandache-type- P_1 -algebra (X, *).

Using Corollary 3.4 and Theorem 3.5 we obtain:

Theorem 3.6. The class of Coxeter algebras and the class of B-algebras of odd order are Smarandache disjoint.

A B-algebra X is said to be 0-commutative ([2]) if x*(0*y) = y*(0*x) for any $x, y \in X$.

Proposition 3.7. ([10]) If (X; *, 0) is a 0-commutative B-algebra, then (0*x)*(0*y) = y*x for any $x, y \in X$.

Lemma 3.8. ([10]) Let (X; *, 0) be a *B*-algebra. Then 0 * (0 * x) = x for any $x \in X$.

Proposition 3.9. Let (X; *, 0) be a B-algebra. If (0*y)*(0*x) = x*y for any $x, y \in X$, then (X; *, 0) is 0-commutative.

Proof. For any $x, y \in X$,

$$x * (0 * y) = (0 * (0 * y)) * (0 * x)$$
$$= y * (0 * x),$$

proving the proposition.

Theorem 3.10. Let (X; *, e) be an abelian group. If we define $x * y := x \cdot y^{-1}, x, y \in X$, then (X; *, 0 = e) is a 0-commutative B-algebra.

Proof. It is shown that (X; *, 0 = e) is a B-algebra and $e * y = y^{-1}$ and $x * y = x \cdot y^{-1} = y^{-1}(x^{-1})^{-1} = (e * y) * (e * x)$ for any $x, y \in X$. By Proposition 3.9, it is a 0-commutative B-algebra.

Proposition 3.11. Let (X; *, 0) be a B-algebra with x * y = y * x, for any $x, y \in X$. Then it is a Coxeter algebra.

Proof. For any $x, y, z \in X$, we have

$$(x*y)*z = x*(z*(0*y)$$

$$= x*((0*y)*z)$$

$$= x*((y*0)*z)$$

$$= x*(y*z)$$
[(IV)]
[commutative]
[commutative]

Proposition 3.12. Let (X; *, 0) be a Coxeter algebra. If x * y = 0, $x, y \in X$, then x = y, i.e., the axiom (V) holds.

Proof. If x * y = 0, then by (I), x * x = x * y. By applying Proposition 2.2 we have x = y.

4. Pre-Coxeter algebras

An algebra (X; *, 0) is called a *pre-Coxeter algebra* if it satisfies the axioms (I), (II), (V), (VI) x * y = y * x for any $x, y \in X$.

Example 4.1. Let $X := [0, \infty)$. If we define $x * y := |x - y|, x, y \in X$, then (X; *, 0) is a pre-Coxeter algebra, but not a Coxeter algebra, since (1 * 2) * 3 = 2, but 1 * (2 * 3) = 0.

Example 4.2. Let $X := \{e, a, b, c\}$ be a set with the following table:

Then $X := \{e, q, b, c\}$ is a pre-Coxeter algebra, but not a Coxeter algebra, since $(a * b) * c = a \neq e = a * (b * c)$.

Proposition 4.3. Every Coxeter algebra is a pre-Coxeter algebra.

Proof. It follows from Theorem 2.3 and Proposition 3.12.

Theorem 4.4. The class of pre-Coxeter algebras and the class of BCK-algebras are Smarandache disjoint.

Proof. Let (X; *, 0) be a BCK-algebra and (Y; *, 0) be a pre-Coxeter algebra with $Y \subseteq X$, $|Y| \ge 2$. Then x = x * 0 = 0 * x = 0 for any $x \in Y$, a contradiction.

Lemma 4.5. Let (X; *, 0) be a pre-Coxeter algebra. If $x * y = 0, x, y \in X$, then x = y.

Proof. Straightforward.

Proposition 4.6. Let (X; *, 0) be a Coxeter algebra. Then x * (x * y) = y, for any $x, y \in Y$.

Proof. For any $x, y \in X$, we have

$$(x * (x * y)) * y = ((x * x) * y) * y$$
 [(III)]
= $(0 * y) * y$ [(I)]
= $y * y$ [Proposition2.1]
= 0 [(II)]

Since every Coxeter algebra is a pre-Coxeter algebra, by Lemma 4.5, we obtain x * (x * y) = y.

Note that x * (x * y) = y does not hold for pre-Coxeter algebras in general.

Example 4.7. Let $X := \{0, 1, 2, 3\}$ be a set with

Then (X; *, 0) is a pre-Coxeter algebra, but $(1 * (1 * 2)) * 2 = (1 * 3) * 2 = 3 * 2 = 1 \neq 0$.

Theorem 4.8. Let (X; *, 0) be a pre-Coxeter algebra with (x * (x * y)) * y = 0, for any $x, y \in X$. Then the cancellation laws hold.

Proof. Assume x * a = x * b, where $x, a, b \in X$. Then, by Lemma 4.5, a = x * (x * a) = x * (x * b) = b.

References

- [1] P. J. Allen, H. S. Kim and J. Neggers, Smarandache disjoint in BCK/d-algebras, (submitted).
- [2] Jung R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and Related systems 8 (2001), 1–6.
- [3] Qing Ping Hu and Xin Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [4] Qing Ping Hu and Xin Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659–661.
- [5] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japnica 23 (1978), 1–26.
- [6] K.Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [7] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Mathematicae 1 (1998), 347-354.
- [8] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
- [9] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.

- [10] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21–29.
- [11] W. B. V. Kandasamy, §semirings, semifield, and semivector spaces American Research Press, Rehoboth, 2002.

¹Department of Mathematics Hanyang University Seoul 133-791, Korea E-mail:heekim@hanyang.ac.kr

^{2,*}Department of Mathematics Institute for Basic Science Chungbuk National University Chongju 361-763, Korea E-mail:yhkim@chungbuk.ac.kr

Department of Mathematics
 University of Alabama
 Tuscaloosa, AL 35487-0350
 U. S. A.
 E-mail:jneggers@gp.as.ua.edu