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DISTRIBUTED ROBUST CONTROL OF KELLER-SEGEL
EQUATIONS

SANG-UK RyU AND YONG-SIK YUN

Abstract. We are concerned with the robust control problem for
the Keller-Segel equations with the distributed control and distur-
bance. We consider the present problem as a differential game find-
ing the best control which takes into account the worst disturbance.
We prove the existence of solutions and the optimality conditions

to a corresponding problem.

1. Introduction

In this paper we study the distributed robust control problem for the

Keller-Segel equations with uncertain disturbance:

Problem (P) To find the saddle point (%, A\) € E x G such that

J(@,A) < J(a,A) < J(u, N).

The functional J(u, A) is of the form

T T
J(u, A) = /0 lly(u, A) — yd“%{x(g)dt +/0 [’Y”U“%{s(n) - l“/\Hr;){f(Q)]dt
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and y = y(u, A) is governed by the Keller-Segel equations( Keller and
Segel [6])

(1.1) %:aAy——bV{pr} in Qx (0,77,
Op .
b—z:dAp+fy~gp+u+>\ in Qx (0,7,
Oy dp
%—an—() on 02 x (0,7,

y(z,0) = yo(z), p(z,0) = po(z) in Q.

Here, €2 is a bounded region in R? of C3 class. a, b, d, f, g > 0 are given
positive numbers. u« > 0 and A > 0 are a control and a disturbance
varying in some bounded subsets E and G of L?(0,T; H*(f2)), respec-
tively. ¢ is some fixed exponent such that 0 < e < 1/2. n = n(z) is the
outer normal vector at a boundary point z € 9Q0 and 6—35 denotes the
differentiation along the vector n. yo(z) and po(z) are nonnegative ini-
tial functions in L?(2) and in H!*¢(Q), respectively. y, p are unknown
functions of the Cauchy problem (1.1).

The Keller-Segel equations (1.1) was introduced by Keller and Segel
[6] to describe the aggregating process of the cellular slime molds by
chemical attraction. Unknown functions y = y(z,t) and p = p(z,t) de-
note the concentration of amoebae in 2 at time ¢t and the concentration
of the chemical substance in 2 at time f. respectively. The chemotactic
term —bV - {yVp} indicates that the cells are sensitive to chemicals and
are attracted by them, and the production term fy indicates that the

chemical substance is itself emitted by cells.

Robustness. insensitivity of svstem properties in the environment and
components, is essential for the operation of both man-made and biolog-
ical system in the real world. Robust control theory, which generalizes
optimal control theory. can be represented as a differential game be-

tween designer seeking the best control. siinultaneously. nature seeking
o . O
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the maximally malevolent disturbance ([3]).

Optimal control and robust control problem associated to nonlinear
equations have already studied by many authors ([1], [2], [3], [4], [7]. [8],
[9] ). Recently, Ryu and Yagi [9] studied the distributed optimal con-
trol problem for the Keller-Segel equations of non-monotone type. The
problem that we consider in this paper is different from [9]. We then
obtain the existence and the optimality conditions by using the method

presented in [3].

This paper is organized as follows: In Section 2, we recall some known
results. Section 3 introduce the robust control problem and prove the
existence of solution, and obtain the optimality conditions for the prob-
lem (P).

Notations. R denotes the sets of real numbers. For a region Q C R?,
the usual L? space of real valued functions in €2 is denoted by LP(2),
1 < p < . The real Sobolev space in €2 with an exponent s > 0 is
denoted by H*(2). Let I be an interval in R. LP(I;’H), 1 < p < oo, de-
notes the L? space of measurable functions in I with values in a Hilbert
space H. C(I;H) denotes the space of continuous functions in I with
values in H. For simplicity, we shall use a universal constant C to denote
various constants which are determined in each occurrence in a specific
way by d, M, N, and so forth. In a case when C depends also on some

parameter, say 0, it will be denoted by Cy.
2. The formulation of problem
Let us briefly recall the way how to formulate (1.1) as a semilinear

abstract differential equation in a Hilbert space. Let 4] = —aA + a and

Ay = —dA + ¢ be the Laplace operators equipped with the Neumann
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boundary conditions. The part of A; in L%(Q) is a positive definite
self-adjoint operator in L?(2) with the domain D(A;) = H2(Q)) = {y €
H*(9); % = 0 on 9Q). D(A?) = H*(Q) for 0 < § < 2, and D(A?) =
H2(Q) for 3 < § < 2 (see Triebel [10]).

We introduce two product Hilbert spaces V C H as

V= HY(Q) x D(AY*/?) and 1 = LX(Q) x D(A{/?),

respectively, where ¢ is some fixed exponent ¢ € (0, %) By the identifi-
cation of H and its dual H’', we have: V C H = H' C V. It is then seen
that V' = (HY(Q))" x D(AS/Q) with the duality product

2
(@, Y)vixy = (Cy)(Hryxmt + (Ag/z% Aé+8/ p)Lm

¢:<C>ev’, Y:(y)ev.
v p

In this paper, the norms of V, H, and V' are denoted by || - |, | - |, and
|- |l+, respectively. The duality product between V and V' is denoted by

<'7 > :
We set also a symmetric sesquilinear form on V x V:

a(Y, V) = (4179, 4,%9) 12 + (470, 4,7 p)

(-

Obviously, the form satisfies

L2

(2.1) (Y. Y)| < M|Y]JY], Y.Y eV
(2.2) aV.Y)Y>0|Y|?. YevVv

with some 0 and A > 0. This form then defines a linear isomorphism

Ay 0 . . . .
A= ( (l X ) from V to V', and the part of A in H is a positive definite
) A

self-adjoint operator in H with the domain D(A) = D(A;) x D(Ag”f)/g).
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(1.1) is, then, formulated as an abstract equation

Y
(2.3) % +AY = F(Y)+G(t), 0<t<T,

Y(0) =Yy

in the space V'. Here, F(-) : V — V' is the mapping

FY)= <_bv{y7yp} * ay), Y = (i) €V.

0
G(t) = (yysa) and Yo = (%)
As verified in (]9, Sec. 2]), F(-) satisfies the following conditions:

(fi) For each n > 0, there exists an increasing continuous function
&n : [0,00) — [0, 00) such that

IEY) <nllY [l + ¢q(IY]), Y eV
(f.ii) For each n > 0, there exists an increasing continuous function
Py [0,00) — [0, 00) such that
\F(Y) = PO
<allY =Vl + (P + 1Y+ Dw(IF ]+ VDT - Y.V, Y ev.

Furthermore, F(Y') is first order Fréchet differentiable with the deriva-

tive
F'(Y)Z = (—bV{wa} —fl;V{va} I az)

F'(-) satisfies the following estimates ([9, Sec. 2|):
(f.iii) For each n > 0, there exists an increasing continuous functions

iy v 1 [0,00) — [0, 0c) such that

nlIZINPI+ AY T+ Dy (IYDIZHPNL Y, 2, P eV,
2P+ YT+ D (IYDIZINIPL Y. 2. P eV,
v(iYDIZINPL, Y, 2, P eV,

(F'(Y)Z.P)| <

(f.iv) There exists C' > 0 such that

IF'(Y)Z - F'(Y)Z|l. <CIY =Y||Z|l, Y.Y.Z € V.
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We then obtain the following result (For the proof, see Ryu and Yagi
[9)-

Theorem 2.1. Let (2.1), (2.2), (f.i), and (f.ii) be satisfied. Then, for
any G € L*0,T;V") and Yy € H, there ezists a unique weak solution

Y € HY(0,T(Yo, G); V') N C([0, T(Yy, G)|; H) N L2(0, T(Yy, G): V)

to (2.3), the number T(Yy, G) > 0 is determined by the norms Gl 20,70
and |Yol.

3. Distributed robust control

In this section, we obtain the existence of solution to the problem
(P). Let £ C L?(0,5;V') and G C L%(0,S;V') be closed, bounded, and
convex subsets. Let G(t) be decomposed into the control part U = (?)
and the disturbance part A = (2) Then, the problem (P) is obviously

formulated as follows:

Problem (P) To find the saddle point (U, X) € £ x G such that
J(U,A) < J(U,X) < J(UR).

The cost functional J(U, A) is of the form
S N
J(U,A) = / IDY (U, A) — Yql|*dt +/ U = LA} dt.
0 0

Here, Y = Y (U, A) is the weak solution of (2.3) and is assumed to exist
on a fixed interval [0, S]. D('Z) = () is a bounded operator from V into
Vand Yy = (”0”’) is a fixed element of L%(0,S;V). ~ and [ are positive

constants.

Definition 3.1. The control U and the disturbance X. and the solution
Y = Y(U.RX) to (2.3) associated with (U, A) are said to solve the robust
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control problem (P) when a saddle point (U.A) of the cost functional J

1s reached such that

JU,A) < J(U,K) <JUAR) YUA€EEXG.

To derive the existence of the saddle point for (P), second order
Fréchet differentiable of the mapping F(:) : V — V' is necessary. It is

indeed observed by a direct calculation that

F(Y)(Z,Z) = (‘QW{ZV“’}) Y = <y> Z - <z> V.

0 P w

Then, we have the following estimate(cf. [9, Sec. 2]):

(f.v) There exists N > 0 such that
IF"(Y)(Z, 2)|. < NIZ|| ZIl, Y, ZeV.

Lemma 3.2. For any fixed A € G, the mapping U — Y (U, A) from &
into H'(0,S; V') N L0, S;V) is differentiable in the sense

Y(U +hU,A) =Y (U, A)

- — Z in HY(0,5;V)n L*(0,S; V)

as h — 0, where U,(~] cEandU+hU € &. Moreover, Z:Z(U,A;ﬁ,())

satisfies the linear equation

(3.1) %+AZ—F’(Y(U,A))Z:U, 0<t<S,
Z(0) = 0.

Proof. As the proof is similar to [9, Proposition 5.1]. we will only
sketch.
For any fixed A € G. let U. Ue&and0< h<1. Let Y, and Y be

the solutions of (2.3) corresponding to U + hU and U. respectively.
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Obviously, W =Y}, — Y satisfies

(3.2) d—d‘;/- + AW — (F(Yy(t)) = F(Y(t)) = hU(t), 0 <t <8,

W (0) = 0.

Taking the scalar product of the equation (3.2) with W and using (2.2)

and (f.il), we have
W) + 8| W ()|
mt O + 8w )

S§I!W<t>l!2+(Ith(t)H2+HY(t)II2+ 1)¢ g(th O +1Y @)) W)
+4h25 YU (b))%

Using Gronwall’s lemma, we obtain that

W) < Ch2”(7H%Q(OYS;V/)GIOS(“Yh(S)H2+”Y(S)”2+1)w%(|Yh(5)'+|Y(S)l)2ds
for all ¢t € [0, S]. Hence, Y), — Y strongly in C([0, S]; H) as h — 0.

On the other hand, we consider the linear problem (3.1). From (2.1),
(2,2), (f.i), (f.i1), and (f.iii), we can easily verify that (3.1) possesses a
unique weak solution Z € H(0,S:V")NC([0. S]: H)NL%(0, S; V) on [0, 5]
(cf. (5, Chap. XVIIL, Theorem 2]). Define ¥} = [ F/(Y +6(Y,—Y))df.

Then W = % — Z satisfies

dW (1)
dt
W(0) = 0.

3.3 L AW() — FIW () = (F, — F))Z(t). 0<t<S§,
h 0

Taking the scalar product of the equation of (3.3) with W and using

(f.iii) and (f.iv). we have

2, 005
5711“ O+ IVl

< (IY (O + 1Ya(6) = Y (O + D(Yal* + Y)W ()]
+CIYL () =Y (O Z(0])%.
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where [ : [0,00) - [0, c0) is some increasing continuous function. There-

fore,
ST+ 5 [ 1)
< [V + I + DA + 1y BT s

S
+mn—Y@mﬁml|wwwﬁ.

Using Gronwall’s lemma, we obtain that

WwP+/nW@Ww

< ClY), - y;c([o s7) ||ZHL2 o SV)ef" Y (PP +HIYR ()P +D)a(Yal?+]Y[?)ds

for all ¢ € [0,5]. Since Y, — Y in C([0, S]; H), we conclude that ﬁ;—y
is strongly convergent to Z in H*(0,S;V' )N L%(0,S;V). O

Lemma 3.3. For any fited U € £, the mapping A — Y(U,A) from G
into H'(0,S; V') N L%(0,S;V) is differentiable in the sense
Y(U, A+ hA) =Y (U, A)
h
as h — 0, for A,1~X € G and A+ hA € G. Moreover, Z = Z(U,A;O, 1~\)

satisfies the linear equation

— Z in H'(0,S; V)N L*(0,5; V)

iz - .
(3.4) Z+AZ-F(Y(UANZ=K  0<t<5S,

Z(0) = 0.

Proof. The proof is similar to that of Lemma 3.2. O
We have similar results for second order derivatives of Y (U, A) with
respect to the control U and the disturbance A, respectively. The proof

is similar to that of Lemma 3.2.
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Lemma 3.4. For any fized A € G, the mapping U — Y(U,A) from &
into H(0,5;V')NL2(0,S; V) is second order differentiable in the sense

Z(U + hU,\;U,0) — Z(U,A; U, 0)
h

ash — 0, forU,ﬁ €& andU+hU € €. Moreover, ® = ®(U, A; 17,0; (7,0)

satisfies the linear equation

— @ in HY(0,5;V)N L0, 5;V)

2+ AD— P(Y(UAN)(Z.2) - F(Y(U,A)® =0, 0<t<S,
3(0) = 0.

Here, Z is the solution of (3.1).

Lemma 3.5. For any fized U € £, the mapping A — Y(U,A) from G
into HY(0,S;V') N L2%(0,S;V) is second order differentiable in the sense

Z(U,A + hA;0,A) — Z(U, A; 0, A)
h

ash — 0, for A, Ae€Gand A+hA €G. Moreover, P = &)(U, A0, A; O,IA\)

satisfies the linear equation

— & in H'(0,5;V') N L*(0,5;V)

‘fl_‘f + A — F'(Y(U,A)Z,2) - F(Y(UA))® =0, 0<t<S,
®(0) = 0.

Here, Z is the solution of (3.4).

Proposition 3.6. There exist ¥ and | such that, for v > 5 and | > L,

we have
1. VA€ G, U — JU,A) is strictly convex lower semicontinuous,

2.VU € &, A — J(U,A) is strictly concave upper semicontinuous.

Proof. First, we prove that U — J(U.A) is lower semicontinuous for all

Ae G, and A — J(U. A) is upper semicontinuous for all U € &.
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Let U, be a minimizing sequence of J, i.e. liminf J(U,, A) = min
n—00 Ue€&

J(U,A)(VA € G). Since £ is bounded, we can extract from U, a sub-
sequence also denoted by U, such that U, — U weakly in L%(0,8;V").
Using the similar estimate of the solution Y (Up, A), we see as in the

proof of [9, Theorem 2.1] that

dY (U, A
1Y (Un, Ml 220,50y < C, H—-—-—) <C

L20,5v) —

Then we have

Y(Un,A) =Y weakly in L%(0,T;V),
Y(Un,A) —» Y strongly in L%(0,T; H).

Therefore, by the uniqueness of the solution, Y = Y(U' ,A). Since the
norm is lower semicontinuous, we have that U — J(U, A) is lower semi-
continuous for all A € G. By using the same technique we obtain that
A — J(U, A) is upper semicontinuous for all U € €.

Now, we prove that A — J(U, A) is strictly concave for all U € &,
and U — J(U, A) is strictly convex for all A € G.

As in {3}, to prove the concavity, it is enough to prove that g(h) =
J(U,A + hA) is concave with respect to h near h = 0, i.e., g’(0) < 0.
Denote Y = Y(U, A + hA). First, we note that the derivative g'(h) of

h reads:
s ~ s o
/ (DY" — vy, DZMydt — z[ (A + hA, A)dt.
0 0
Here, Zh = Z(U A+ hA: 0, 1~\) satisfies
dzh

dt
Z"(0) = 0.

(3.5) +AZN - F(YMZ' =K,  0<t<S.
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Taking the scalar product with Zh to (3.5) and using (f.iii), (f.iv), we
have, for 0 <t < §,

36) 2P+ 2 0P
< (VM2 + DAY RIZA O + ZIRL

where fi : [0,00) — [0, 00) is some increasing continuous function. Using

Gronwall’s inequality, we obtain

(3.7) 1ZMH)P?P < 85—1||K||32(0,S;v/)efi<uwn2+1m<|m?)ds

IA

C1 ||K”2L2(0,S:,V’)'

Using this result in (3.6) and integrating from 0 and ¢, we have

s N
(3.8) /0 1Z"($)11%dt < Col| Al 20,50

To calculate ¢”(h), we need second order derivative of Y with respect to
the disturbance. By Lemma 3.5, we see that oh = &)(U, A+hK; 0, A0, IA\)
satisfies
=, ~ o ~
(3.9) % + AD" — F"(YM\(Z", ZM) - Fl(YyMeh =0, 0<t< S,
"(0) = 0.
Taking the scalar product with ®" to (3.9) and using (f.iii), (f.iv), (f.v),
we have, for 0 <t < S,
1d
2dt
d.~ 4 o Shio Shi r N ~
< §H<I>h||2 + gJVQIIZhHQ!ZhI2 + (Y2 + 1)a(y"?)e 2,

(3.10) B ()2 + 512" (1)1

where fi : [0, 0c) — [0, oc) is some increasing continuous function. There-

fore, by Gronwall’s inequality, we obtain
" ()| < 85—1NZHZh”%‘Z(o.s;V)”ZhH%x(o,s;n)efos(“wHgﬂ)ﬁmwlr‘))ds
and thus. by (3.7) and (3.8),

|B(1)]? < C3||K||i2(o.s:v')-
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Using this result in (3.10) and integrating from 0 and ¢. we have

s -
/0 " ()17dt < CullAll 720,507

Therefore, we obtain
S -~
/ (®", D*A(DY" - Yy))dt
0

< ([Traea) 1o [ 1oyt - vaa) " < AL s

For second order derivative, we have

S -~
g'(h) = /0<<I>h,D*A(DYh—Yd))dt

S _ N s _
+/ (DZ" DZM)ydt - l/ (A, A)ydt.
0 0
Thus, under assumption [ > | = ||DHQC’2 +Cs,
§"(0) < (1= DIIAIZ 2050 <O YA #£0.

Therefore, A — J(U, A) is concave if [ > .

For the convexity, it is sufficient to show that k(h) = J(U + hU,A)
is convex with respect to h near h = 0, i.e., £”(0) > 0. Denote Y}, =
YU + hU, A). Similarly, we obtain that

s s .
k”(h)—/o <<1>h,D*A(DYh—Yd)>dt+/O <DZ’1,DZh>vdt+7/O (U,U)yrdt.

Here, Z" = Z(U + hU, A: U, 0) satisfies

dz" h vy oh D )
== HAZN P2 =0, 0<t<S,

ZM0) = 0.

and ®" = ®(U + hU, AU, 0: U, 0) satisfies

d(I)h
—+ ADM — FI(V)(Z". ZM - F(y)eth =0, 0<t <S8,

oM (0) = 0.
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Using similar a priori estimates as previously, we obtain that under

assumption vy > 7 = Cs,
K'(0) > (v = DT 320,500 >0 YT #0.

Therefore, U — J(U, A) is convex if v > 5. O
From the general framework developed in [3], we have the following

result.

Theorem 3.7. Assume that £ and G are non-empty, closed, bounded,
convez subsets of L*(0,S;V') and that v > 5 and | > 1. Then, there
exists a saddle point (U, A) such that '

(3.11) JU,AN) <JU,A) <JUA) YUA €EXG.

Now we can give the optimality conditions for the robust control

problem (P).

Theorem 3.8. Let (U.A) be an solution of (P) and Y = Y(U,A) €
HY0,5;V)NnC(0,S);H) N L*0.S:V) be the solution to (2.3) with the
control U(t) and the disturbance A(t). Then, there exists a unique solu-
tion P € HY(0,5:V)NC([0,S]: H) N L2(0,S:V) to the linear problem

(3.12) —%+AP~F’(?)*P:D*J(DV—Yd), 0<t<S,
P(S)=0

in V', where J :V — V' is a canonical isomorphism; moreover,

g

(3.13) / (TP 4+ ~U U —=U)ydt >0 forall Ueé.
0

and

S
(3.14) / (TP =K. A =NX)ydt <0 forall A €G.
Jo
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Proof. Let (U,A) be a saddle point for the problem (P). For any
U € &, by the convexity of &, Uy = U + (U —U) € E for 0 < h < L.
By Theorem 2.1, (2.3) has a unique solution Y (U, A) corresponding to
Uy, and A.

Using the second inequality of (3.11), we have

o JUn K = IO )
h—0 h

(3.15)
s s _
:/ (DY - Yy, DZ)ydt + 7/ (T, U = T)yrdt >0
0 0

with Z = Z(U,A; U — U, 0) satisfying

dz — _
— +AZ-F(V)Z=U-T, 0<t<S$
Z(0) = 0.

Let P be the unique solution of (3.12) in H(0,S;V') N C([0,S];H) N
L?(0,S;V). From [5, Chap. XVIII, Theorem 2|, we can guarantee that
such a solution P exists. Thus, the first integral in the right hand side
of (3.15) is shown to be

S _ S _
(3.16) /0 (DY — Y, DZ)ydt = /0 (D" 7(DY — Y,), Z)dt

S
dP —.
= /0 <“'E+AP~F'(Y) P, Z)dt

S
Z _
= A (P, ‘Z—t +AZ - F/(Y)Z)dt

S
= / (TP, U —U)ydt.
0
Hence,
S — —
/ (TP +~U, U —=U)ydt > 0. for all U € £.
0

This prove the inequality (3.13).
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Similarly, for any A € G, Ay = A+ h(A—A) € G for 0 <h <1. By
Theorem 2.1, (2.3) has a unique solution Y (U, A},) corresponding to U
and Ay, .

Using the first inequality of (3.11), we have

= A IO s )
lig 240 = JOA) /(DY—Yd,DZ>th
0

h—0 h
S — —
—1/ (&, A — K)pedt < 0
0
with Z = Z(U, A;0,A — A) satisfying

E+A§~F’(7)Z:A—K, 0<t<S,

Z(0) = 0.

Similarly, as in (3.16), we obtain

S
/(jP—lK,A—K)V/dtSO, forall AcG. O
0
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