ON THE TWO SIDED IDEALS OF ORDERS IN A QUATERNION ALGEBRA

SUNG TAE JUN AND IN SUK KIM

Abstract. The orders in quaternion algebras play central role in the theory of Hecke operators. In this paper, we study the order of two sided ideal group in orders of a quaternion algebra.

1. Introduction

A quaternion algebra over a field k means a semi simple algebra of dimension 4 over k. It is known that there are three kinds of primitive orders in quaternion algebras over a local field. First, if A is a division algebra, an order of A is primitive if it contains the full ring of integers of a quadratic extension field of k. Second, if A is isomorphic to $\operatorname{Mat}_{2\times 2}(k)$, an order of A is primitive if it contains a subset which is isomorphic to $\mathfrak{o}\oplus\mathfrak{o}$, where \mathfrak{o} is the ring of integers in k. Finally, if A is isomorphic to $\operatorname{Mat}_{2\times 2}(k)$, an order of A is also called primitive if it contains the full ring of integers in a quadratic extension field of k. The arithmetic properties of first two types of primitive orders were studied in [3], [7]. For the remaining type was studied in [5] only for the non dyadic local field case. In this paper we will study the arithmetic theory of the remaining type over a dyadic local field. As an application, the class number of primitive orders over a dyadic local field will be computed.

Received May 24, 2003; Revised October 3, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 11R12.

Key words and phrases: order, quaternion algebra, normalizer, idele.

This paper was supported by Wonkwang University in 2003.

2. Primitive orders

2.1. In this section, we summarize the arithmetic theory of a quaternion algebra and its order.

A lattice on A is a finitely generated \mathbb{Z} module containing a base of A over \mathbb{Q} . An order of A is a lattice on A which is also a subring with 1. The analogous definitions hold for lattices and orders in $A_p = A \otimes \mathbb{Q}_p$ for a prime p.

Throughout this paper we assume that k is a dyadic local field, \mathbb{Q}_2 . Let \mathfrak{o} denote the ring of integers in k, \mathfrak{p} the maximal ideal of \mathfrak{o} . By $\Delta(\alpha)$, we denote the discriminant of α .

$$\Delta(\alpha) = \text{Tr}(\alpha)^2 - 4N(\alpha),$$

where Tr and N are the trace and norm of L over k respectively, where L is a quadratic extension field of k. If Γ is an \mathfrak{o} algebra of rank 2 contained in L, then $\Gamma = \mathfrak{o} + \mathfrak{o}x$ and the discriminant of Γ is

$$\Delta(\Gamma) = \Delta(x) \mod U^2,$$

where U is the set of all units in \mathfrak{o} .

Let $\mathfrak{o}^2 - 4\mathfrak{o} = \{s^2 - 4n | s, n \in \mathfrak{o}\}$. Then we consider the set of all possible discriminants $(\mathfrak{o}^2 - 4\mathfrak{o})/U^2$.

2.2. Note that $\Delta_{\sigma}^* \neq \phi$ only if $\sigma = 2\rho, 0 \leq \rho \leq e$ or $\sigma = 2e + 1$ where $e = \operatorname{ord}_k(2)$. Let

$$\Delta^* = \cup_{\sigma=0}^\infty \Delta_\sigma^* = \left(\cup_{\rho=0}^e \Delta_{2\rho}^*\right) \cup \Delta_{2e+1}^*.$$

Then we know Γ is a maximal order of a quadratic extension field of k if and only if $\Delta(\Gamma) \in \Delta^*$. If e > 0 and $1 \le \rho \le e$

$$\Delta_{2\rho}^* = \pi^{2\rho} (U^2 + \pi^{2\epsilon - 2\rho + 1} U)/U^2.$$

There is a bijective correspondence between elements of Δ^* and quadratic extension field of k given by $\Delta(\Gamma) \to \Gamma \otimes \mathfrak{o}_k$ for $\Delta(\Gamma)$ an element of Δ^* .

Thus we can classify all quadratic extension fields of a dyadic local field k as follows: Δ_0^* contains one point which corresponds to a unique unramified quadratic extension of k and

$$\Delta_{2e+1}^* = \pi^{2e+1} U/U^2$$

contains $2q^2$ points representatives where $q = |\mathfrak{o}/\mathfrak{p}|$.

Definition 1. Let L be a quadratic extension of k. We define

$$t = t(L) = \operatorname{ord}_k(\Delta(L)) - 1.$$

Remark. Note that if L is an unramified extension field of k, then t = -1. On the other hand, if L is a ramified extension field of a dyadic field k, then t > 0 (See 1.3 in [4]).

2.3. Let A be a rational quaternion algebra ramified precisely at the odd prime q and ∞ . That is, $A_q = A \times \mathbb{Q}_q$ and $A_\infty = A \times R$ are division algebras. Otherwise, $A_p = A \times \mathbb{Q}_p$ is isomorphic to $M_2(\mathbb{Q}_p)$ for a finite prime $p \neq q$ (See [5]).

Fix a prime $p \neq q$ and let L be a quadratic extension field of \mathbb{Q}_p . It is known that $\left\{ \begin{pmatrix} \alpha & \bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \middle| \alpha, \beta \in L \right\}$ is a quaternion algebra over \mathbb{Q}_p .

Let
$$\left\{ \begin{pmatrix} \alpha & \overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} | \alpha, \beta \in L \right\} = L + \xi L$$
, where $\xi = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Then $\xi \alpha = \overline{\xi}, \xi^2 = 1$ and $\overline{\xi} = -\xi$.

Hence, we can define the norm of an element in A as its determinant.

2.4. Let P_L be the prime ideal of \mathcal{O}_L which is the ring of integers in L. In [6], we have computed that the possibilities of an order, R of A_2

containing \mathcal{O}_L . We state the results in the following theorem.

Theorem 2.1. Let the notations be as in 2.3 and 2.4. If an order R of A_2 contains \mathcal{O}_L , then the possibilities of R are one of the followings.

- (i) If p is a unramified prime in L, $R = \mathcal{O}_L + \xi P_L^{\nu}$.
- (ii) If p is a ramified prime in L, $R = \mathcal{O}_L + (1+\xi)P_L^{\nu-t-1}$ or $\overline{R} = \mathcal{O}_L + (1-\xi)P_L^{\nu-t-1}$.

for some nonnegative integer ν with some $\xi \in A_2$.

Proof. See [6].

Remark. Since $\operatorname{ord}_k(2) = e$, if L is a ramified quadratic extension field of k, then $\operatorname{ord}_L(2) = 2e$. Hence, in the above definition, if t(L) < 2e, then $(1+\xi)P_L^{-t-1} = (1-\xi)P_L^{-t-1}$. That is $R_0(L) = \overline{R_0(L)}$. On the other hand, if t(L) = 2e, then there are two different maximal orders $R_0(L)$ and $\overline{R_0(L)}$. However, $\mathcal{O}_L + (1+\xi)P_L^{-t} = \mathcal{O}_L + (1-\xi)P_L^{-t}$ by the same reasoning of the t(L) < 2e case. i.e. $R_1(L) = R_0(L) \cap \overline{R_0(L)}$.

We now define the level of order M of A.

Definition 2. Let A be an quaternion algebra over a number field K and let L be a quadratic extension field of K. An order M of A is called primitive if M contains the ring of integers of L.

Remark. A primitive order was studied in Eicher's thesis [2]. Over a local field, this primitive order is divided into three types of orders. Since $A_p = A \otimes K_p$ is either a division algebra or a 2×2 matrix algebra over K_p and $L \otimes K_p$ is either $K_p \otimes K_p$ or a quadratic extension field of K_p , we are able to classify the primitive orders M_p of A_p as follows.

1. If A_p is a division algebra, then $L \otimes K_p$ is a quadratic extension field of K_p . Hence, M_p contains the ring of integers of $L \otimes K_p$.

- 2. If A_p is a 2×2 matrix algebra over K_p , then M_p contains $\mathfrak{o}_K \otimes \mathfrak{o}_K$, where \mathfrak{o}_K is the ring of integers in K_p .
- 3. If A_p is a 2×2 matrix algebra over K_p , then M_p contains the ring of integers of $L \otimes K_p$.

In this paper we study third type of orders over a dyadic local field.

Definition 3. Let A be a rational quaternion algebra ramified precisely at one finite prime q and ∞ . For finite primes, $p_1, p_2, \cdots p_d \neq q$, an order M has level $(q; L(p_1), \nu(p_1); \cdots; L(p_d), \nu(p_d))$ if

- (i) M_q is the maximal order of A_q .
- (ii) for a prime $p \neq q$, there exists a quadratic extension field L(p) of \mathbb{Q}_p and nonnegative integer $\nu(p)$ (which is even if L(p) is unramified) such that $M_p = R_{\nu(p)}(L(p))$,
- (iii) $\nu(p_i) > 0$ for $i = 1, 2, \dots, d$ and $\nu(p) = 0$ for $p \neq q, p_1 \dots, p_d$. (i.e. M_p is a maximal order of A_p if $p \neq p_1, p_2, \dots, p_d$).
- **2.5.** In the rest of this paper, let A be a rational quaternion algebra ramified precisely at the odd prime q and ∞ and we will restrict ourselves with the primitive orders \mathcal{O} in a quaternion algebra which has level $N' = (q; L(p_1), \nu(p_1); \dots; L(p_d), \nu(p_d))$ with $\nu(p_i) > 1$ for $i = 1, \dots d$. If L(p) is the unramified extension field of Q_p , $\nu(p)$ is always even number.
- **Definition 4.** Let \mathcal{O} be an order of level N' in A. A left \mathcal{O} ideal I is a lattice on A such that $I_p = \mathcal{O}_p a_p$ (for some $a_p \in A_p^{\times}$) for all $p < \infty$. Two left \mathcal{O} ideals I and J are said to belong to the same class if I = Ja for some $a \in A^{\times}$. One has the analogous definition for right \mathcal{O} ideals.
- **Definition 5.** The norm of an ideal, denoted by N(I), is the positive rational number which generates the fractional ideal of \mathbb{Q} generated by $\{N(a)|a\in I\}$. The conjugate of an ideal I, denoted by \bar{I} , is given by $\bar{I}=\{\bar{a}|a\in I\}$. The inverse of an ideal, denoted by I^{-1} , is given by

$$I^{-1} = \{ a \in A | IaI \subset I \}.$$

Definition 6. The class number of left ideals for any order \mathcal{O} of level N' is the number of distinct classes of such ideals. We denote this by H(N').

Remark. Let A be a quaternion algebra and let M be any order of A. The idele group of J_A of A is

$$J_A = \{\tilde{a} = (a_p) \in \prod_p A_p^{\times} | a_p \in U(M_p) \text{ for almost all } p \},$$

where $U(M_p)$ is the set of all units in M_p .

Here the product is over all primes, finite and infinite. Note that since for two orders M and N of A, $M_p = N_p$ for almost all p, J_A is independent of the particular orders used in this definition. J_A is a locally compact group with the topology induced by the product topology on the open set $\prod_{p \in S} A_p^{\times} \prod_{p \notin S} U(M_p)$, where S ranges over all finite subset of primes containing ∞ . If $\tilde{a} \in J_A$, we define the volume of \tilde{a} as $\operatorname{vol}(\tilde{a}) = \prod_p |N(a_p)|_p$ where $|\cdot|_p$ is normalized such that $|p|_p = \frac{1}{p}$ for $p < \infty$ and $|\cdot|_{\infty}$ is the ordinary absolute value in \mathbb{R} . Let $J_A^1 = \{\tilde{a} \in J_A | \operatorname{vol}(\tilde{a}) = 1\}$ and embed $A^{\times} \subset J_A^1$ along the diagonal. Finally, if M is an any order of A, let $\mathfrak{U}(M) = \{\tilde{a} \in J_A^1 | a_p \in U(M_p) \text{ for all } p < \infty\}$.

Proposition 2.2. Let \mathcal{O} be any order of level N' in A. Then

- (1) A^{\times} is a discrete subgroup of J_A^1 .
- (2) J_A^1/A^{\times} is compact.
- (3) $\mathfrak{U}(\mathcal{O})$ is an open compact subgroup of J_A^1 .

Proof. See Weil [11].

Proposition 2.3. The double cosets $\mathfrak{U}(\mathcal{O})\backslash J_A^1/A^{\times}$ are in 1-1 correspondence with the ideal classes of left \mathcal{O} ideals.

Proof. If $J_A^1 = \bigcup_{i=1}^H \mathfrak{U}(\mathcal{O})\tilde{a}_i A^{\times}$, then $\mathcal{O}\tilde{a}_i$, $i = 1, \dots, H$ represent the distinct left \mathcal{O} ideal classes.

Proposition 2.4. J_A^1 acts transitively (by conjugation) on orders of level N' in A.

Proof. The action is for $\tilde{a} \in J_A^1$ and \mathcal{O} an order of level N': $\mathcal{O} \leftrightarrow \{\mathcal{O}_p\} \mapsto \{a_p^{-1}\mathcal{O}_p a_p\} \leftrightarrow \mathcal{O}'$ and we write $\mathcal{O}' = \tilde{a}^{-1}\mathcal{O}\tilde{a}$. The action is obviously transitive.

Definition 7. Let I be a left \mathcal{O} -ideal for some order of level N'. The left order of $I = \{a \in A | aI \subseteq I\}$. If $I = \mathcal{O}\tilde{a}$, then the left order of I is \mathcal{O} and the right order is $\tilde{a}^{-1}\mathcal{O}\tilde{a}$. Thus if I is an ideal of an order of level N', its left and right orders also have level N.

From the above definition, we are able to define two sided ideals. A left \mathcal{O} -ideal is said to be two sided if its right order is also \mathcal{O} , i.e. if it is also a right \mathcal{O} -ideal. More explicitly, we define two sided ideals as follows.

Definition 8. Let $I = \mathcal{O}\tilde{a}$ for some order \mathcal{O} of level N' and $\tilde{a} \in J_A^1$. Then I is called a two sided ideal if $\tilde{a}^{-1}\mathcal{O}\tilde{a} = \mathcal{O}$.

3. The Normalizer of orders

It is clear that if we fix \mathcal{O} , the set of two sided ideals form a group. If I and J are two sided \mathcal{O} ideals and I = Ja for $a \in A^{\times}$, then $a^{-1}\mathcal{O}a = \mathcal{O}$ as I and J have the same right order and thus $\mathcal{O}a$ is also a two sided \mathcal{O} ideal. Hence we can consider the ideal class group of two sided \mathcal{O} ideals.

The order of this group is called the class number of two sided \mathcal{O} ideals. This group is important to study the action of the canonical involution acting on the certain spaces of modular forms.

Definition 9. We define the normalizer of an order $\mathfrak O$ of a quaternion algebra A as

$$\mathfrak{N}(\mathfrak{O}) = \{ \tilde{a} \in J_A^1 | \tilde{a}^{-1} \mathfrak{O}_p \tilde{a} = \mathfrak{O} \},$$

locally $\mathcal{N}(\mathfrak{O}_p) = \{a_p \in A^{\times} | a_p^{-1} \mathfrak{O}_p a_p = \mathfrak{O}_p \text{ for all } p < \infty \}.$

In order to compute the normalizer of orders, we first compute the normalizer of orders locally. If $p \neq 2$, the normalizer of orders were computed by several authors in [3], [5], [7]. Hence we will compute only for dyadic local field case, i.e. p = 2 case.

Recall the definition of orders, $R_{\nu} = \mathcal{O}_L + \xi P_L^{\nu-t-1}$. For the computational convenience, we introduce a new notation : $M(R_{\nu}) = \{x \in R_0(L)^{\times} | x^{-1} R_{\nu} x = R_{\nu} \}$.

Theorem 3.1. Let L be a unramified quadratic extension field of k and $k = \mathbb{Q}_2$. Then for an order of $A_2 = A \otimes k$, $R_{\nu}(L)$, we have

$$M(R_{\nu}) = \begin{cases} R_0^{\times} \\ R_{\nu}^{\times} \cup \xi R_{\nu}(L)^{\times} \text{ for } \nu > 0. \end{cases}$$

Proof. $\nu = 0$ case is trivial. Hence assume that $\nu > 0$. Let $\alpha + \xi \beta \in R_{\nu}(L) = \mathcal{O}_L + \xi P_L^{\nu}$ and $g \in R_0^{\times} = (\mathcal{O}_L + \xi \mathcal{O}_L)^{\times}$.

$$g(\alpha + \xi \beta)\overline{g} = (\gamma + \xi \delta) \cdot (\alpha + \xi \beta) \cdot (\overline{\gamma + \xi \delta})$$

$$= (\alpha \gamma + \beta \overline{\delta} + \xi(\alpha \delta + \beta \overline{\gamma})) \cdot (\overline{\gamma} - \xi \delta)$$

$$= \alpha \gamma \overline{\gamma} + \beta \overline{\gamma} \overline{\delta} - \overline{\alpha} \overline{\delta} \delta - \overline{\beta} \gamma \delta + \xi(\alpha \overline{\gamma} \delta + \beta \overline{\gamma}^2 - \overline{\alpha} \overline{\gamma} \delta - \beta \delta^2)$$

$$\in \mathcal{O}_L + \xi P_L^{\nu}.$$

 $\alpha \overline{\gamma} \delta + \beta \overline{\gamma}^2 - \overline{\alpha \gamma} \delta - \beta \delta^2 \in P_L^{\nu} \text{ implies that } \operatorname{ord}_k((\alpha - \overline{\alpha}) \overline{\gamma} \delta) \geq \nu.$ Hence either $\operatorname{ord}_L(\delta) \geq \nu$ and $\gamma \in \mathcal{O}_L^{\times}$, or $\operatorname{ord}_L(\gamma) \geq \nu$ and $\delta \in \mathcal{O}_L^{\times}$. This means $M(R_{\nu}(L)) = R_{\nu}(L)^{\times} \cup \xi R_{\nu}(L)^{\times}$.

Theorem 3.2. Let L be a ramified quadratic extension field of k and $k = \mathbb{Q}_2$. Then for an order of $A_2 = A \otimes k$, $R_{\nu}(L)$, we have

$$M(R_{\nu}) = \begin{cases} R_{\nu}^{\times} & \text{if } \nu = 0\\ R_{\left[\frac{1}{2}(\nu+1)\right]}^{\times} & \text{if } 0 < \nu \le 2t + 2\\ R_{\nu-t-1}^{\times} \cup \xi R_{\nu-t-1}^{\times} & \text{if } 2t + 2 < \nu, \end{cases}$$

where [x] is the largest integer not greater than x.

Proof. If $\nu = 0$, R_0 is a maximal order. $M(R_0) = R_0^{\times}$ clear from the definition.

Now assume that L is ramified. we divide this into two cases. That is, t=2e case and t<2e case.

We first consider t = 2e case.

There are two different maximal orders which contain \mathcal{O}_L , i.e. $R_0(L) = \mathcal{O}_L + (1+\xi)P_L^{-t-1}$ and $\overline{R_0(L)} = \mathcal{O}_L + (1-\xi)P_L^{-t-1}$. Since t = 2e, $\mathcal{O}_L + (1-\xi)P_L^{-t} = \mathcal{O}_L + (-1-\xi+2)P_L^{-t} = \mathcal{O}_L + (1+\xi)P_L^{-t}$. $R_0(L) \cap \overline{R_0(L)} = R_1(L)$. Thus, by Hijikata's theorem in [3], $R_1 \simeq \begin{pmatrix} \mathfrak{o} & \mathfrak{o} \\ 2\mathfrak{o} & \mathfrak{o} \end{pmatrix}$, where \mathfrak{o} is the ring of integers in k. $M(R_1) = R_1^{\times}$ was computed in [3].

If $1 < \nu \le 2t + 2$, then $R_{\nu} = \mathcal{O}_L + (1 + \xi)P_L^{\nu - t - 1}$. Let $g \in M(R_1)$. Then gR_1g^{-1} contains R_{ν} and gR_1g^{-1} is the second largest order containing R_{ν} , which implies $gR_{\nu}g^{-1} = R_{\nu}$. Without loss of generality, we assume that $M(R_{\nu}) \subset M(R_1) = R_1^{\times}$. Let $g = c + d + \xi d \in R_1^{\times}$ and

$$a + b + \xi b \in R_{\nu} = \mathcal{O}_L + (1 + \xi)P_L^{\nu - t - 1}.$$

$$g(\alpha + \xi \beta)\overline{g} = (c + d + \xi d) \cdot (a + b + \xi b) \cdot (\overline{c + d} + \xi \overline{d})$$

$$= (c + d + \xi d) \cdot (a + b + \xi b) \cdot (\overline{c + d} - \xi d)$$

$$= ((c + d)(a + b) + b\overline{d} + \xi((a + b)d + b(\overline{c + d})) \cdot (\overline{c + d} - \xi d)$$

$$= N(c + d)(a + b) + b\overline{d}(\overline{c + d}) - (\overline{a + b})\overline{d}d - \overline{b}(c + d)d$$

$$+ \xi((a + b)(\overline{c + d})d + b(\overline{c + d})^2 - \overline{(c + d)(a + b)}d - \overline{b}d^2)$$

$$\in \mathcal{O}_L + (1 + \xi)P_L^{\nu - t - 1}.$$

Thus we need two conditions, $(a+b)(\overline{c+d})d+b(\overline{c+d})^2-\overline{(c+d)(a+b)}d-\overline{b}d^2 \in P_L^{\nu-t-1}$ and $N(c+d)(a+b)+\overline{b}d(\overline{c+d})-\overline{(a+b)}\overline{d}d-\overline{b}(c+d)d-\overline{b}(c+d)d-\overline{b}(c+d)d+b(\overline{c+d})^2-\overline{(c+d)(a+b)}d-\overline{b}d^2\} \in \mathcal{O}_L$. For the first one, we have the followings.

$$(a+b)(\overline{c+d})d + b(\overline{c+d})^2 - \overline{(c+d)(a+b)}d - \overline{b}d^2$$

$$= ((a+b) - (\overline{a+b}))(\overline{c+d})d + b(\overline{c+d})^2 - \overline{b}d^2$$

$$= ((a-\overline{a})(\overline{c+d})d + (b-\overline{b})(\overline{c+d})d + b\overline{c}^2 + 2b\overline{c}\overline{d} + b\overline{d}^2 - \overline{b}d^2$$

$$= ((a-\overline{a})(\overline{c+d})d + (b-\overline{b})\overline{c}d + b\overline{c}^2 + 2b\overline{c}\overline{d} + b\overline{d}^2 - \overline{b}d^2 + (b-\overline{b})d\overline{d}$$

$$= ((a-\overline{a})(\overline{c+d})d + (b-\overline{b})\overline{c}d + b\overline{c}^2 + 2b\overline{c}\overline{d} + (b\overline{d} - \overline{b}d)(d + \overline{d}).$$

Since $d \in P_L^{-t}$, $\operatorname{Tr}(d) = d + \overline{d} \in \mathcal{O}_L$. Hence, $b \in P^{\nu-t-1}$ implies that $\operatorname{ord}_L((a-\overline{a})(\overline{c+d})d) = t+1+2\operatorname{ord}_L(d) \geq \nu-t-1$ is needed. That is, $\operatorname{ord}_L(d) \geq \frac{1}{2}\nu-t-1$ and the second condition is easily satisfied with $\operatorname{ord}_L(d) \geq \frac{1}{2}\nu-t-1$. Thus $M(R_{\nu}(L)) = R_{[\frac{1}{2}(\nu+1)]}(L)$ for $1 \leq \nu \leq 2t+2$, where [x] is the largest integer not greater than x.

Next, if $2t + 2 \le \nu$, then $R_{\nu} = \mathcal{O}_L + \xi P_L^{\nu - t - 1}$. Let $\alpha + \xi \beta \in R_{\nu}(L)$ and $g \in R_{t+1}^{\times} = (\mathcal{O}_L + \xi \mathcal{O}_L)^{\times}$.

$$g(\alpha + \xi \beta)\overline{g} = (\gamma + \xi \delta) \cdot (\alpha + \xi \beta) \cdot (\overline{\gamma + \xi \delta})$$

$$= (\alpha \gamma + \beta \overline{\delta} + \xi(\alpha \delta + \beta \overline{\gamma})) \cdot (\overline{\gamma} - \xi \delta)$$

$$= \alpha \gamma \overline{\gamma} + \beta \overline{\gamma} \overline{\delta} - \overline{\alpha} \overline{\delta} \delta - \overline{\beta} \gamma \delta + \xi(\alpha \overline{\gamma} \delta + \beta \overline{\gamma}^2 - \overline{\alpha} \overline{\gamma} \delta - \beta \delta^2)$$

$$\in \mathcal{O}_L + \xi P_L^{\nu - t - 1}.$$

 $\operatorname{ord}_k((\alpha - \overline{\alpha})\overline{\gamma}\delta) \geq \nu - t - 1 \Rightarrow \operatorname{ord}_L(\delta) \geq \nu - 2t - 2 \text{ and } \nu \geq 0.$ Finally, it is easy to see $\xi R_{\nu} \xi^{-1} = R_{\nu}$. Thus $M(R_{\nu}(L)) = R_{\nu-t-1}(L)^{\times} \cup$ $\xi R_{\nu-t-1}(L)^{\times} \text{ for } 2t+2 < \nu.$

$$M(R_{\nu}) = \begin{cases} R_{\lfloor \frac{1}{2}(\nu+1) \rfloor}^{\times} & \text{if } t+1 \leq 2t+2 \\ R_{\nu-t-1}(L)^{\times} \cup \xi R_{\nu-t-1}(L)^{\times} & \text{if } 2t+2 \leq \nu. \end{cases}$$

Finally, t < 2e, The computation of this case is exactly same manner as in the case t = 2e.

Theorem 3.3. Let R_{ν} be an order of A_2 over a dyadic local field k. Then

Then
$$\begin{cases} \{1\} \text{ if } \nu = 0 \\ R_{[\frac{1}{2}(\nu+1)]}^{\times}/R_{\nu}^{\times} \\ & \text{if } 0 < \nu \leq 2t+2 \text{ and } L \text{ is ramified} \\ R_{\nu-t-1}^{\times}/R_{\nu}^{\times} \cup \xi R_{\nu-t-1}^{\times}/R_{\nu}^{\times} \\ & \text{if } 2t+2 < \nu \text{ and } L \text{ is ramified} \\ \{1,\xi\} \end{cases}$$
 where α is a set the oritical bijective relation.

where \approx is a set theoritical bijective relation.

Proof. From the facts that $\mathcal{N}(R_{\nu}) = k^{\times} M(R_{\nu})$, this is immediate from Theorem 3.1 and 3.2.

Corollary 3.4. Let the notations be as in Theorem 3.3. Then

$$|\mathcal{N}(R_{\nu})/R_{\nu}^{\times}k^{\times}| = \begin{cases} 1 & \text{if } \nu = 0 \\ 2^{\nu - \left[\frac{1}{2}(\nu+1)\right]} & \text{if } 0 < \nu \le 2t+2 \text{ and } L \text{ is ramified} \\ 2^{t+1} & \text{if } 2t+2 < \nu \text{ and } L \text{ is ramified} \\ 2 & \text{if } 0 < \nu \text{ and } L \text{ is unramified.} \end{cases}$$

Proof. By Theorem 3.3, this is immediately given.

From Definition 8, the classes of two sided ideal correspond to $\mathfrak{N}(\mathcal{O})/\mathfrak{U}(\mathcal{O})J_{\mathbb{Q}}^1$ where $\mathfrak{U}(\mathcal{O})=\{\tilde{a}|a_p\in\mathcal{O}_p^{\times}\text{ for all }p<\infty\}$. We are now finally able to find the general formula for class number of the two sided \mathcal{O} ideal classes. For p=2 we have computed the normalizer in this paper and for the other primes, we refer to [5].

Theorem 3.5. Let \mathcal{O} be an order of level $N'=(q;L(2),\nu(2);\cdots;L(p_d),\nu(p_d))$ in A. Then

$$H(N') = 2^{d_1 \cdot (\nu - [\frac{1}{2}(\nu+1)])} \cdot 2^{d_2(t+1)} \cdot 2^{d_3}$$

where d_1 is the number of ramified prime p_i with $0 < \nu(p_i) \le 2t + 2$, d_2 is the number of ramified primes with $2t + 2 < \nu(p_i)$ and d_3 is the number of unramified primes.

Proof. By Theorem 3.3 and Corollary 3.4, we have

$$\begin{split} H(N') &= |\mathfrak{N}(\mathcal{O})/\mathfrak{U}(\mathcal{O})J_{\mathbb{Q}}^{1}| \\ &= \prod_{p} |\mathcal{N}(\mathcal{O}_{p})/\mathcal{O}_{p}^{\times}k^{\times}| \\ &= 2^{d_{1}\cdot(\nu - \left[\frac{1}{2}(\nu+1)\right])}\cdot 2^{d_{2}(t+1)}\cdot 2^{d_{3}}, \end{split}$$

where d_1 is the number of ramified prime p_i with $0 < \nu(p_i) \le 2t + 2$, d_2 is the number of ramified primes with $2t + 2 < \nu(p_i)$ and d_3 is the number of unramified primes.

References

- M. Deuring, Die An zahl der Typen von Maximalordnungen einer definitn Quaternionalgebra mit primer Grundzahl. Jber. DEutsch. Math. Verein. Vol.54, pp.24-41, 1950.
- [2] M. Eichler, Untersuchungen in der Zahlentheorie der rationalen Quaternionenalgebraen J. reine angew. Math., Vol.174(1936), 126-159.
- [3] H. Hijikata, Explicit formula of the traces of the Hecke operators for $\Gamma_0(N)$, J. Math. Soc. Japan, Vol.**26**, pp. 56-82, 1974. A. Atkin and J. Lehner Hecke operators on $\Gamma_0(N)$ Math. ann. 185 1970 134-160
- [4] H.Hijikata, A.Pizer and T.Shemanske, Orders in Quaternion Algebras, J. Reine angew Math., Volbf 394 1989, pp.59-106
- [5] S. Jun, On the certain primitive orders J. of KMS, Vol. 4, pp. 473-481, 1995.
- [6] S. Jun, The Mass formula of orders over a dyadic local field preprint.
- [7] A. Pizer, On the arithmetic of Quaternion algebras II J. Math. Soc. Japan Vol.28, pp.676-698, 1976.
- [8] A. Pizer, The action of the Canonical involution on Modular forms of weigh 2 on $\Gamma_0(N)$ Math. Ann. Vol.**226**, pp.99-116, 1977.
- [9] A. Pizer, An Algorithm for computing modular forms on $\Gamma_0(N)$ J. Algebra Vol.64, pp. 340-390, 1980.
- [10] I. Reiner, Maximal orders Academic Press, 1975.
- [11] A. Weil, Basic number theory Berlin, Hedelberg, New York: Springer 1967.

Sung tae Jun
Division of Mathematics and Computer sicience
Konkuk University,
Choongju, Choongbuk, 380-151, Korea
E-mail:sjun@kku.ac.kr

In suk Kim
Division of Mathematics and Informational Statistics
Wonkwang University,
Iksan, Jeonbuk, 570-749, Korea
E-mail:iki@wonkwang.ac.kr