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ON THE HIGHER ORDER KOBAYASHI METRICS

Jong Jiv Kiv*, IN Gyu HwaNG, JEONG GYUN KIM
AND JEONG SEUNG LEE

Abstract. In this paper, we prove the product property and the
existence of an extremal analytic disc relative to the higher order
Kobayashi metric. Also by making use of the upper semicontinuity
of the higher order Kobayashi metric, we introduce a pseudodis-
tance and investigate some properties of that pseudodistance re-

lated to the usual Kobayashi metric.

1. Introduction

About 1966, S. Kobayashi initiated studying his pseudodistance([3])
and H. L. Royden published the infinitesimal form in [7]. The infinites-
imal form that is called as the Kobayashi metric is studied in [1], [6], [7]
etc. The higher order Kobayashi metric was introduced by J. Yu in [8]
and N. Nikolov also investigated the higher order Kobayashi metric in
[5].

Our goal here is the proof of some properties related to the higher or-
der Kobayashi metric as the counterpart for the usual Kobayashi metric.
To do this, we introduce some notations which is dealt in this article.
By N and C we denote the set of natural numbers and the set of com-

plex numbers, respectively. We use the usual inner product (-, -) and the
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norm || - || on C" which is defined by
Zz]w], 2]/ - lejlz
for all z=(z1,---,2,) and w = (wy, -+ ,wy) in C™.

Further, by F§ and Kq we denote the Carathéodory metric and the

usual Kobayashi metric for some domain €.
2. The higher order Kobayashi metric

The higher order Kobayashi metric is introduced in [8] by J. Yu as
the generalization of the Kobayashi-Royden metric or simply Kobayashi
metric.

Let D C C™ be a domain and denote by O(A, D) the space of all
holomorphic mappings from the unit disk A C C into D. For t € D, we
mean by O(A, D) the set {¢ € O(A, D) | ¢(0) = t}.

For each m € N and (z,X) € D x C", the m-th order Kobayashi
metric is defined by
(2.1)
K7z, X) = inf{|r| 7' | 3 € O,(A, D) s.t. v(1p) > m, ™ (0) = mlrX}

where v (1)) stands for the order of vanishing of ¢ — ¢(0) at 0. Clearly
K},(z, X) is the usual Kobayashi metric. The singular Kobayashi metric

is defined as follows :

(2.2) Ky(z,X) = HéfNKD(Z X).

Proposition 2.1. Let D be a domain in C" and m € N. Then K7} is

upper semicontinuous on D x C™.

Proof. Fix (z,Xg) € D x (C"\ {0}) and let K} (z.Xo) < A. Then

by the definition of the higher order Kobavashi metric, there exist a



bl
o
—
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¢ € Oy (A, D) and r > 0 such that
1
v(¢) > m, ¢'™(0) = mlrXy and - — <A

Fix an n € (0,1) arbitrarily small for which ¢((1 — ) A) is a relatively
compact subset of D. Putting 6 = dist(9D, ¢((1 — 17) = A)), we have
§ > 0. Let (2,X) € D x C* with ||z — 2| < § and r[|X — Xp|| < ¢
Define a holomorphic map ¥ : A — D by ¥(() := ¢((1 — n)#g) +(z—
z9) + (1 — n)(™(X — Xo). Then

W(A) C D, $(0) =z, v(yp) > m and '™ (0) = (1 — n)m!X.

Hence we have

Letting n — 01, we obtain
1
K2z, X) < = < A.
T

Thus K7} is upper semicontinuous on D x C*. [

Since the infimum of any collection of upper semicontinuous functions

is upper semicontinuous, we have the following

Corollary 2.2. Let D C C™ be a domain. Then the singular Kobayashi

metric K7y is also upper semicontinuous on D x C™.

Proposition 2.3. Let D C C" be a domain. Then for each m > 1, we
have

(1) K75 has the length decreasing property. In particular, K7} is
biholomorphically invariant.

(2) K} = KA. the usual Kobayashi metric for the unit disc A.

(3) Fi(z, X) < K32, X) < Kp(z, X).

(4) K5 (2, nX) = |p| K5 (2. X) for all p € C.

Proof. For the detail proofs of (1) ~ (3). one refer to [8].
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(4) It is clear in case of u = 0. Hence assume that p # 0.
Let ¥ € O,(A,D) and 7 > 0 with v(9) > m and 9™ (0) = mlrpX.
Then since
KB (2 X) < —
rlpl
we obtain |pu/K7(z, X) < % But since ¥ was arbitrary, we have the

following
(2.3) [ulKD (2, X) < K7 (2, pX).
Conversely, let ¢ € O.(A,D) and r > 0 with v(¢) > m and ¢(™(0) =

m!rX. Then since ¢™(0) = mirX = m!ﬁuX, we obtain

K X) < —/ = —.
Dz p )_ ” ‘N'r

But since ¢ was arbitrary, we have
(2.4) Kp(z,uX) < UKD (2, X).

By (2.3) and (2.4), we reach at the required result. O

Theorem 2.4. Let D C C" and G C C'! be domains. Then the following

formula holds :

KTanG((Zv w)v (Xv Y)) = Inax{KB”(z, X)v ng(w’ Y)}

Proof. By the contraction property (1) of Proposition 2.3 with respect
to holomorphic mappings, the inequality 7 > 7 is easily obtained.

To prove the reverse inequality, suppose that
KBe((z.w).(X.Y)) > A > max{Kp (=, X), K& (w, )},
Then, by definition, we find ¢ € O,(A. D),y € Oy(A,G)and r > 0,5 >
0 that satisfy the properties

v(@) >m, &"(0)=mirX,
v(v) > m, 1/)(”"')(0) = m!sY,

~ =

< A
< A.

n
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Without loss of generality, we may assume 0 < r < s. If we define a

holomorphic map f: A — D x G by
£0) = (0w ((9)7¢))
then f(0) = (z,w),v(f) > m and f(™(0) = m!r(X,Y). Hence
KByol(0), (X,Y)) < = < 4

contrary to our assumption. [J

By applying Lempert’s Theorem([2], [4]) with Proposition 2.3, we ob-

tain

Proposition 2.5.([1], [2]) Let D C C™ be an open unit ball with center

0. Then we have

I

X1 (2. X)? ]
T—lzf? (1= l2]1?)?]

KBl X) = |

for all (2, X) € D x C". In particular, we have

=

X112 (2, X) 1% ]
L=z (1= 1l2]%)?]

KX - |

for all (2, X) € D x C™.

From Theorem 2.4 and Proposition 2.5 we have the following

Corollary 2.6. Let D := A™ C C" be a unit polydisc with center 0.

Then we have

Kf)"(z,X):max{ Xl Xl }

1—1z127 "1 —|z,)?

for all (2, X) € D x C™.

Theorem 2.7. Let D C C” be a taut domain (i.e., O(A. D) is a normal

family). Then for any (z, X) € D x C", there exists an extremal analytic



554 Jong Jin Kim”, In Gyu Hwang, Jeong Gyun Kim and Jeong Seung Lee
disc ¢ € O,(A, D) for K7}, in other words,
v(¢) >m and K7 (z, X)¢™(0) = m!X.

Proof. By definition of the higher order Kobayashi metric, we can
choose a sequence {¢,} C O,(A,D) and a sequence {r,} of positive
real numbers such that

1

v(gn) > m, o™ (0) =m!r, X and — \, K%(z, X) as n — oo.

Tn
Since O(A, D) is a normal family, there is a subsequence {¢n, } of {¢,}
and ¢ € O,(A, D) such that {¢,, } converges compactly to ¢ on D. Then
we have

. m ) m!X
1/((]5) Z m, ¢(m)(0) = khm ¢( )(0) = k]lm m!rnkX = —m O
— X0 — 00 D s

3. A distance induced by Kobayashi metric

We know from Proposition 2.1 that the higher order Kobayashi metric
can be used to define the length of a piecewise Cl-curve and then the
minimal length of all such curves connecting two fixed points will yield
a new pseudodistance.

Define the K7}-length of a piecewise Cl-curve a : [0,1] — D by

1
(3.5) Lin(a) = /0 K7 (a(t), o (t))dt.

Then L,,(a) € [0,00) and so we may define a map dft : D x D — R,

which is called the integrated form of K7}, by
(3.6) df(z.w) = inf L («)
(e}
where the infinmum is taken over all piecewise C'l-curves joining z and w.

Theorem 3.1. Let D C C" be a domain. Then d7} is a pseudodistance
on D.
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Proof. Checking the properties for pseudodistance except the triangle
inequality is clear. To show the triangle inequality, let u,v,w € D. Then
for any € > 0, there exist two piecewise Cl-curves a, 3 : [0,1] — D such
that (0) = u, (1) = v = 3(0),3(1) = w and

Lun(@) < d%(u,v) + % Lin(8) < (v, w) + %

Define a curve v : [0,1] — D by

a(2t), if 0<t<4i
() = 1 2
Bt-1), if 3<t<1

Then v is a piecewise C'-curve connecting v and w. Moreover, applying

(3.5) to v, we have

1
Ln(y) = / K (v(t),7'(t))dt

1
_ / KT (alt). o (£))dt + / KB (B(t), 8/(1))dt

< dp(u,v) +dp(v,w) +e.

Applying (3.6) and then using the fact that ¢ > 0 was arbitrary, we get

the required triangle inequality
dp(u,w) < dp(u,v) +dph(v,w). O

Proposition 2.3 and the definition of dj induce the following

Proposition 3.2. Let Q@ c C' and D C C" be two domains. If f :
1 — D is a holomorphic map. then d (z,w) > dj(f(z), f(w)) for
any z,w € {1 That is, d}; has the distance decreasing property under
holomorphic mappings.

It follows from Proposition 2.3 that the pseudodistance df, induced
by the Carathéodory metric Fj is not larger than d%}. Hence we have

the following
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Proposition 3.3. Let D C C" be a domain. If D is the Carathéodory

hyperbolic(i.e., df, is a distance), then d7 is a distance.

Corollary 3.4. Let D C C" be a bounded domain. Then dj is a dis-

tance.
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