GENERALIZED VECTOR QUASIVARIATIONAL-LIKE INEQUALITIES

MEE-KWANG KANG AND BYUNG-SOO LEE*

Abstract. In this paper, we introduce two kinds of generalized vector quasivariational-like inequalities for multivalued mappings and show the existence of solutions to those variational inequalities under compact and non-compact assumptions, respectively.

1. Introduction and Preliminaries

A vector variational inequality problem was firstly introduced in a finite dimensional Euclidean space with its applications by Giannessi [9]. Later, many authors [1-6, 9, 10, 13-17, 21-25] have extensively studied the problem in infinite dimensional spaces under different assumptions. In particular, vector variational-like inequalities were considered in [1-2, 10, 13, 15] and vector quasivariational inequalities were considered in [3-6, 10, 13, 14, 17, 23-25].

In this paper we introduce two kinds of generalized vector quasivar introductional-like inequality problems for multivalued mappings and show the existence of solutions to our inequality problems.

Received July 1, 2004; Revised November 8, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 49J40.

Key words and phrases: Multivalued mapping, vector quasivariational-like inequality, Ky Fan's Section Theorem, convex cone, upper semi-continuous.

^{*} Corresponding author.

Let X and Y be topological spaces, and $F:X\to 2^Y$ a multivalued mapping.

Definition 1.1. F is called upper semi-continuous (in short, u.s.c.) at $x \in X$ if for each open set V in Y containing F(x), there is an open set U containing x such that $F(u) \subseteq V$ for all $u \in U$; F is called u.s.c. on X if F is u.s.c. at every point of X. F is called lower semi-continuous (in short, l.s.c.) at $x \in X$ if for each open set V in Y with $F(x) \cap V \neq \emptyset$, there is an open set U containing x such that $F(u) \cap V \neq \emptyset$ for all $u \in U$; F is called l.s.c. on X if F is l.s.c. at every point of X. F is called continuous at $x \in X$ if F is both u.s.c. and l.s.c. at $x \in X$.

Lemma 1.1. F is l.s.c. at $x \in X$ if and only if for any $y \in F(x)$ and for any net $\{x_{\alpha}\}$ in X converging to x, there is a net $\{y_{\alpha}\}$ such that $y_{\alpha} \in F(x_{\alpha})$ for each α , and $\{y_{\alpha}\}$ converges to y.

Definition 1.2. F is called closed if the graph $G_rF = \{(x,y) \in X \times Y : y \in F(x)\}$ of F is closed in $X \times Y$, i.e., for each $x \in X$, $\{x_{\alpha}\} \subset X$ with $x_{\alpha} \to x$ and each $\{y_{\alpha}\} \subset Y$ with $y_{\alpha} \in F(x_{\alpha})$ and $y_{\alpha} \to y$, then we have $y \in F(x)$.

Definition 1.3. F is called compact if F(X) is contained in some compact subset of Y.

Definition 1.4. Let $F^-: Y \to 2^X$ be a multivalued mapping defined by

$$x \in F^-(y)$$
 if and only if $y \in F(x)$.

F is said to have open lower sections if for each $y \in Y$, $F^{-}(y)$ is open in X.

In an ordered Hausdorff topological vector space Z, usually a closed convex pointed solid proper cone P in Z defines partial orders < and \le as

$$x <_P y$$
 iff $x - y \in -intP$
 $x <_P y$ iff $x - y \in -P$

for $x, y \in \mathbb{Z}$. To an arbitrary subset C of \mathbb{Z} , the orders can be extended by setting

$$C <_P 0$$
 iff $C \subseteq -intP$
 $C \le_P 0$ iff $C \subseteq -P$.

A point z_0 in a nonempty subset C of Z is called a vector maximal point of C [27] if the set $\{z \in C : z_0 \leq_P z, z \neq z_0\} = \emptyset$, which is equivalent to

$$C \cap (z_0 + P) = \{z_0\}.$$

The following simple fact needed in our research was first introduced by Luc;

Lemma 1.2 [18] Let C be a nonempty compact subset of an ordered Banach space Z. Then $\max C \neq \emptyset$, where $\max C$ denotes the set of all vector maximal points of C.

2. Main results

Now we introduce P-convexity of a two variable function, which is an essential concept to our results.

Definition 2.1. Let K be a nonempty convex subset of a vector space X, and P a pointed, closed convex cone in a topological vector space Z, which has an apex at the origin and a nonempty interior intP. A multivalued mapping $H: K \times K \to 2^Z$ is said to be P-convex with respect to the first variable if for $x_1, x_2, y \in K$, $u_1 \in H(x_1, y)$, $u_2 \in K$

 $H(x_2, y)$ and $\lambda \in [0, 1]$, there exists $u \in H(\lambda x_1 + (1 - \lambda)x_2, y)$ such that

$$\lambda u_1 + (1 - \lambda)u_2 \in u + P.$$

Throughout this section, X, Y denote two Hausdorff topological vector spaces, and Z denotes an ordered Hausdorff topological vector space. Let K be a nonempty convex subset of X, D a nonempty subset of Y and $\{C(x)|x\in K\}$ a family of solid convex cones in Z, that is, for each $x\in K$, intC(x) is nonempty and $C(x)\neq Z$. L(X,Z) denotes the space of all continuous linear operators from X to Z. Let $F:K\to 2^D$, $G:K\to 2^K$, $M:K\times D\to 2^{L(X,Z)}$ and $H:K\times K\to 2^Z$ be multivalued mappings, and $\eta:X\times X\to X$ a mapping.

We consider the following two kinds of generalized vector quasivaria tional-like inequalities for multivalued mappings;

(VQVLI)₁ Find $\bar{x} \in K$ such that for each $x \in K$ there exists $\bar{s} \in F(\bar{x})$ satisfying the following inequality;

$$\max \langle M(\bar{x},\bar{s}), \eta(x,z) \rangle + u \not\in -intC(\bar{x})$$

for any $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$, where

$$\max \langle M(\bar{x},\bar{s}), \eta(x,z) \rangle > = \max_{s \in M(\bar{x},\bar{s})} \langle s, \eta(x,z) \rangle$$

and $\langle s, \eta(x, z) \rangle$ denotes the evaluation of a continuous linear operator s from X into Z at $\eta(x, z)$,

(VQVLI)₂ Find $\bar{x} \in K$ and $\bar{s} \in F(\bar{x})$ such that

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle + u \not\in -intC(\bar{x})$$

for $x \in K$, $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$.

Putting $H \equiv \bar{0}$ in $(\mathbf{VQVLI})_1$ and $(\mathbf{VQVLI})_2$, we obtain the following vector quasivariational-like inequalities:

(VQVLI)'₁ Find $\bar{x} \in K$ such that for any $x \in K$ there exists $\bar{s} \in F(\bar{x})$ satisfying the following inequality;

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle \not\in -intC(\bar{x})$$

for $z \in G(\bar{x})$ and

 $(\mathbf{VQVLI})_2'$ Find $\bar{x} \in K$ and $\bar{s} \in F(\bar{x})$ such that

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle \not\in -intC(\bar{x})$$

for $x \in K$ and $z \in G(\bar{x})$.

By replacing $Y, H: K \times K \to 2^Z$ and $M: K \times D \to 2^{L(X,Z)}$ with $Z, H: K \times K \to Z$ and $S: K \to 2^{L(X,Z)}$, respectively in $(\mathbf{VQVLI})_1$ and $(\mathbf{VQVLI})_2$, we obtain the following vector variational-like inequalities for multivalued mappings;

(VVLI) Find $\bar{x} \in K$ satisfying the following inequality;

$$\max \langle S(\bar{x}), \eta(x, z) \rangle + H(x, \bar{x}) \not\in -intC(\bar{x})$$

for $x \in K$ and $z \in G(\bar{x})$.

Putting $H \equiv \bar{0}$ and $G(\bar{x}) = K$ in **(VVLI)**, we obtain the following vector variational-like inequalities for multivalued mappings, introduced and studied by Chang, Thompson and Yuan [2];

(VVLI)' Find $\bar{x} \in K$ satisfying the following inequality;

$$\max \langle S(\bar{x}), \eta(x, \bar{x}) \rangle \not\in -intC(\bar{x}) \text{ for } x \in K.$$

Putting Z = Y, $\eta(x,z) = x - z$ and $H = \bar{0}$, and replacing $M : K \times D \to 2^{L(X,Z)}$ with $S : K \to L(X,Y)$ in $(\mathbf{VQVLI})_1$ and $(\mathbf{VQVLI})_2$, we have the following variational inequality;

(VVI) Find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - z \rangle \not\in -intC(\bar{x})$$
 for $x \in K$ and $z \in G(\bar{x})$.

Putting $C(x) \equiv C$ for $x \in K$ and $\eta(x,y) = x - y$ in **(VVLI)**, we obtain the following vector-valued variational inequality considered by Lee et al. [16];

Find $\bar{x} \in K$ such that for each $x \in K$, there exists $\bar{s} \in S(\bar{x})$ such that

$$\langle \bar{s}, x - \bar{x} \rangle \not\geq_{-intC} 0,$$

where $x \not\geq_P y$ means $x - y \notin P$.

Putting $Z = \mathbb{R}$, $L(X, Z) = X^*$, the dual of X and $C(x) \equiv \mathbb{R}^+$, the positive orchant for $x \in K$ in (VVLI)', we obtain the following scalar-valued variational inequality considered by Cottle and Yao [7], Isac [12], and Noor [19];

Find $\tilde{x} \in K$ such that

$$\sup_{u \in S(\bar{x})} \langle u, \eta(x, \bar{x}) \rangle \ge 0, \quad \text{for } x \in K.$$

Replacing $S: K \to 2^{L(X,Z)}$ with $S: X \to L(X,Z)$ and putting $\eta(x,z) = x - g(z)$, where $g: K \to K$ is a mapping, then $(\mathbf{VVLI})'$ reduces to the following vector variational inequality (\mathbf{VVI}) considered by Siddiqi et al. [22];

 $(\mathbf{VVI})'$ Find $\tilde{x} \in K$ such that

$$\langle S(\bar{x}), x - g(\bar{x}) \rangle \not\geq_{-intC(\bar{x})} 0, \text{ for } x \in K.$$

Putting $G(x) = \{x\}$ for $x \in K$ in **(VVI)** or g(x) = x for $x \in K$ in **(VVI)**, we obtain the following vector-valued variational inequality considered by Chen [3]:

Find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - \bar{x} \rangle \not\geq_{-intC(\bar{x})} 0$$
, for $x \in K$.

Putting $C(x) \equiv C$ and g(x) = x for $x \in K$ in **(VVI)**, we obtain the following vector-valued variational inequality considered by Chen et al. [3-5];

Find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - \bar{x} \rangle \not\geq_{-intC} 0$$
, for $x \in K$.

Putting $Z = \mathbb{R}$, $X = \mathbb{R}^n$, $C(x) \equiv \mathbb{R}^+$ for $x \in K \subseteq \mathbb{R}^n$, $L(X, Z) = \mathbb{R}^n$ and $\eta(x, y) = x - y$, we obtain the following scalar-valued variational inequality considered by Hartman and Stampacchia [11]; find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - \bar{x} \rangle \ge 0$$
 for $x \in K$.

2.1. Compact set case

When we consider the existence of solutions to $(\mathbf{VQVLI})_1$ for the compact set case, Ky Fan's Section Theorem in [8] is very useful and indispensable.

Theorem 2.1 [8]. Let K be a nonempty compact convex subset of a Hausdorff topological vector space. Let A be a subset of $K \times K$ having the following properties

- (i) $(x, x) \in A$ for all $x \in K$;
- (i) for any $x \in K$, the set $A_x := \{y \in K : (x, y) \in A\}$ is closed in K;
- (iii) for any $y \in K$, the set $A^y := \{x \in K : (x,y) \notin A\}$ is convex or empty in K.

Then there exists $\bar{y} \in K$ such that $K \times \{\bar{y}\} \subset A$.

The following main theorem for the existence of solutions to $(\mathbf{VQVLI})_1$ is for the compact set case.

Theorem 2.2. Let K be a nonempty compact convex subset of X and D a nonempty subset of Y. Let $F: K \to 2^D$ be closed, $G: K \to 2^K$ be l.s.c. and nonempty convex-valued, $M: K \times D \to 2^{L(X,Z)}$ be nonempty compact-valued, and a multivalued mapping $W: K \to 2^Z$ defined by $W(x) = Z \setminus \{-intC(x)\}, x \in K$, closed. Let $\eta: X \times X \to X$ be linear, and $H: K \times K \to 2^Z$ be P-convex with respect to the first variable and l.s.c. with respect to the second, where $P:=\bigcap_{x \in K} C(x)$.

Suppose further that

- (1) $\langle M(x,\cdot), \eta(x,\cdot) \rangle = 0$ and $H(x,x) = \{0\}$ for all $x \in K$;
- (2) F is compact; and
- (3) $\max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle$ converges to $\max \langle M(y, s), \eta(x, z) \rangle$ provided that $y_{\alpha} \to y$, $s_{\alpha} \to s$ and $z_{\alpha} \to z$.

Then $(\mathbf{VQVLI})_1$ is solvable.

Proof. By the assumption that M is nonempty compact-valued, from the continuity of $\langle \cdot, \cdot \rangle$, $\langle M(y,s), \eta(x,z) \rangle$ is compact in Z. So we can define $A = \{(x,y) \in K \times K : \text{there exists } s \in F(y) \text{ such that } \max \langle M(y,s), \eta(x,z) \rangle + u \not\in -intC(y) \text{ for any } z \in G(y) \text{ and } u \in H(x,y) \}$. By the condition (1), it is easily shown that $(x,x) \in A$ for all $x \in K$. Next, $A_x = \{y \in K : (x,y) \in A\}$, $x \in K$ is closed. In fact, let $\{y_\alpha\}$ be a net in A_x such that $y_\alpha \to y$. Then by Lemma 1.1, for any $z \in G(y)$ there exists a net $\{z_\alpha\}$ converging to z such that $z_\alpha \in G(y_\alpha)$ for each α . Also by the lower semi-continuity of H with respect to the second variable, for any $u \in H(x,y)$ there exists a net $\{u_\alpha\}$ converging to u such that $u_\alpha \in H(x,y_\alpha)$ for each α . Since $y_\alpha \in A_x$ we can choose $s_\alpha \in F(y_\alpha)$ such that

$$\max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle + u_{\alpha} \in W(y_{\alpha})$$

for $z_{\alpha} \in G(y_{\alpha})$ and $u_{\alpha} \in H(x, y_{\alpha})$. By the condition (2) and the closedness of F, we can assure the existence of limit s of $\{s_{\alpha}\}$ such that $s \in F(y)$. Hence by the condition (3) and the closedness of W, we have

$$\max \langle M(y,s), \eta(x,z) \rangle + u \in W(y)$$

for any $z \in G(y)$ and $u \in H(x,y)$. Finally, $A^y = \{x \in K : (x,y) \notin A\}$, $y \in K$ is convex. Indeed, let $x_1, x_2 \in A^y$ and $\lambda \in [0,1]$. Then from the fact that $(x_1,y) \notin A$, for any $s \in F(y)$ there exist $z_1 \in G(y)$ and $u_1 \in H(x_1,y)$ such that

$$\max \langle M(y,s), \eta(x_1,z_1) \rangle + u_1 \in -intC(y)$$

and from the fact that $(x_2, y) \notin A$, for any $s \in F(y)$ there exist $z_2 \in G(y)$ and $u_2 \in H(x_2, y)$ such that

$$\max \langle M(y,s), \eta(x_2,z_2) \rangle + u_2 \in -intC(y).$$

Hence, for any $s \in F(y)$ there exist $u \in H(\lambda x_1 + (1 - \lambda)x_2, y)$ and $z := \lambda z_1 + (1 - \lambda)z_2 \in G(y)$ for $\lambda \in [0, 1]$ such that

$$\max \langle M(y,s), \eta(\lambda x_1 + (1-\lambda)x_2, z) \rangle + u$$

$$= \max \langle M(y,s), \eta(\lambda x_1 + (1-\lambda)x_2, \lambda z_1 + (1-\lambda)z_2) \rangle + u$$

$$= \max \langle M(y,s), \lambda \eta(x_1, z_1) + (1-\lambda)\eta(x_2, z_2) \rangle + u$$

$$\leq \lambda \max \langle M(y,s), \eta(x_1, z_1) \rangle + (1-\lambda) \max \langle M(y,s), \eta(x_2, z_2) \rangle + u$$

$$\in \lambda \max \langle M(y,s), \eta(x_1, z_1) \rangle + (1-\lambda) \max \langle M(y,s), \eta(x_2, z_2) \rangle + \lambda u_1$$

$$+ (1-\lambda)u_2 - P$$

$$= \lambda (\max \langle M(y,s), \eta(x_1, z_1) \rangle + u_1) + (1-\lambda) (\max \langle M(y,s), \eta(x_2, z_2) \rangle$$

$$+ u_2) - P$$

$$\subseteq -intC(y) - intC(y) - C(y)$$

$$= -intC(y).$$

Thus $\lambda x_1 + (1 - \lambda)x_2 \in A^y$, which shows that A^y is convex. Hence by Ky Fan's Section Theorem there exists $\bar{x} \in K$ such that

$$K \times \{\bar{x}\} \subset A$$
,

which implies that for any $x \in K$, there exists $\bar{s} \in F(\bar{x})$ such that

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle + u \not\in -intC(\bar{x})$$

for $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$. This completes the proof.

2.2. Noncompact set case

For considering the existence of solutions to $(\mathbf{VQVLI})_2$ for noncompact set case, we use the following particular form of the generalized Ky Fan's Section Theorem due to Park [20].

Theorem 2.3. Let K be a nonempty convex subset of X and $A \subset K \times K$ satisfy the following conditions;

- (i) $(x, x) \in A, x \in K$;
- (i) $A_x = \{ y \in K : (x, y) \in A \}, x \in K$, is closed;
- $(\bar{\mathbf{n}})$ $A^y = \{x \in K : (x, y) \not\in A\}, y \in K$, is convex or empty;
- (iv) there exists a nonempty compact subset B of K such that for each finite subset N of K there exists a nonempty compact convex subset L_N of K containing N such that

$$L_N \cap \{y \in K : (x,y) \in A \text{ for any } x \in L_N\} \subset B.$$

Then there exists a $y_0 \in B$ such that $K \times \{y_0\} \subset A$.

In particular, if K = B, that is, K is a compact convex subset of X, then the condition (iv) is obviously true, thus the three conditions of Ky Fan's Section Theorem are sufficient to show the existence of $y_0 \in K$ such that $K \times \{y_0\} \subset A$.

To show the existence of solutions to $(\mathbf{VQVLI})_2$ for the noncompact set case, the following lemmas are essential.

Lemma 2.4. Let K be a nonempty convex subset of X and D be a nonempty subset of Y. Let $f: K \to D$ be a continuous function, $M: K \times D \to 2^{L(X,Z)}$ be nonempty compact-valued, and $G: K \to 2^K$ a l.s.c. mapping with nonempty convex-values. Let a multivalued mapping $W: K \to 2^Z$ defined by $W(x) = Z \setminus \{-intC(x)\}, x \in K$, be closed. Let $\eta: X \times X \to X$ be linear and $H: K \times K \to 2^Z$ P-convex with respect to the first variable and l.s.c. with respect to the second, where $P = \bigcap_{x \in K} C(x)$. Suppose further that

- (1) $\langle M(x,\cdot), \eta(x,\cdot) \rangle = 0$ and $H(x,x) = \{0\}$ for all $x \in K$,
- (2) $\max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle$ converges to $\max \langle M(y, s), \eta(x, z) \rangle$ provided that $y_{\alpha} \to y$, $s_{\alpha} \to s$ and $z_{\alpha} \to z$;
- (3) there is a nonempty compact subset B of K such that for each nonempty finite subset N of K, there is a nonempty compact convex subset L_N of K containing N such that for $y \in L_N \backslash B$, there exist $x \in L_N$, $z \in G(y)$ and $u \in H(x,y)$ such that

$$\max \langle M(y, f(y)), \eta(x, z) \rangle + u \in -intC(y).$$

Then there exists $\bar{x} \in K$ such that

$$\max \langle M(\bar{x}, f(\bar{x})), \eta(x, z) \rangle + u \not\in -intC(\bar{x})$$

for any $x \in K$, $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$.

Proof. Let $A = \{(x,y) \in K \times K : \max \langle M(y,f(y)), \eta(x,z) \rangle + u \not\in -intC(y)$ for any $z \in G(y)$ and $u \in H(x,y)\}$. It is easily shown that $(x,x) \in A$ for $x \in K$ from the condition (2). And $A_x = \{y \in K : (x,y) \in A\}, x \in K$, is closed. In fact, for any net $\{y_\alpha\}$ in A_x converging to y, we have $\max \langle M(y_\alpha, f(y_\alpha)), \eta(x, z_\alpha) \rangle + u_\alpha \not\in -intC(y_\alpha)$ for any $z_\alpha \in G(y_\alpha)$ and $u_\alpha \in H(x,y_\alpha)$. From Lemma 2.1 and the condition

(1), $\max \langle M(y, f(y)), \eta(x, z) \rangle + u \not\in -intC(y)$ for any $z \in G(y)$ and $u \in H(x, y)$, we have $y \in A_x$, showing the closedness of A_x for $x \in K$. By a similar method shown in the proof of Theorem 2.2, we can show that the set $A^y = \{x \in K | (x, y) \not\in A\}$, $y \in K$, is convex. Further note that the assumption (3) implies that for $y \in L_N \setminus B$ there exists $x \in L_N$ such that $y \not\in A_x$. Hence the condition (iv) of Theorem 2.3 is satisfied. Hence there exists $\bar{x} \in K$ such that

$$\max \langle M(\bar{x}, f(\bar{x})), \eta(x, z) \rangle + u \not\in -intC(\bar{x})$$

for $x \in K$, $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$. This completes the proof.

Lemma 2.5 [26]. Let X be a paracompact Hausdorff topological space and Y a topological vector space. Let $F: X \to 2^Y$ be a multivalued mapping with nonempty convex-values. If F has open lower sections, then there exists a continuous function $f: X \to Y$ such that $f(x) \in F(x)$ for $x \in X$.

Now we consider the existence of solution to (VQVLI)₂.

Theorem 2.6. Let K be a nonempty paracompact convex subset of X and D a nonempty convex subset of Y. Let $F: K \to 2^D$ have nonempty convex-values and open lower sections, $G: K \to 2^K$ be a l.s.c. mapping with nonempty convex-values, $M: K \times D \to 2^{L(X,Z)}$ be nonempty compact-valued, and $W: K \to 2^Z$ defined by $W(x) = Z \setminus \{-intC(x)\}, x \in K$, closed. Let $\eta: X \times X \to X$ be linear and $H: K \times K \to 2^Z$ be P-convex with respect to the first variable and l.s.c. with respect to the second, where $P = \bigcap_{i \in I} C(x)$.

Suppose further that

- (1) $\langle M(x,\cdot), \eta(x,\cdot) \rangle = 0$ and $H(x,x) = \{0\}$ for all $x \in K$,
- (2) $\max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle \to \max \langle M(y, s), \eta(x, z) \rangle$ provided that $y_{\alpha} \to y, s_{\alpha} \to s$ and $z_{\alpha} \to z$,

- (3) F is compact,
- (4) there is a nonempty compact subset B of K such that for any nonempty finite subset N of K, there is a nonempty compact convex subset L_N of K containing N such that for any $y \in L_N \setminus B$, there exist $x \in L_N$, $z \in G(y)$ and $u \in H(x, y)$ such that

$$\max \langle M(y,s), \eta(x,z) \rangle + u \in -intC(y)$$

for any $s \in F(y)$.

Then $(\mathbf{VQVLI})_2$ is solvable, i.e., there exist $\bar{x} \in K$ and $\bar{s} \in F(\bar{x})$ such that

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle + u \not\in -intC(\bar{x})$$

for any $x \in K$, $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$.

Proof. Since $F^-(y)$ is open in X for $y \in D$, by Lemma 2.5 there exists a continuous function $f: K \to D$ such that $f(x) \in F(x)$ for $x \in K$. So, by Lemma 2.4 there exists $\bar{x} \in K$ such that

$$\max \langle M(\bar{x}, f(\bar{x})), \eta(x, z) \rangle + u \not\in -intC(\bar{x})$$

for any $x \in K$, $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$. This completes the proof.

References

- [1] Q. H. Ansari, A note on generalized vector variational-like inequalities, Optimization 41 (1997), 197–205.
- [2] S. S. Chang, H. B. Thompson and G. X. Z. Yuan, The existence theorems of solutions for generalized vector-valued variational-like inequalities, Comput. Math. Appl. 37 (1999), 1-9.
- [3] G. Y. Chen, Existence of solutions for a vector variational inequality: An extension of the Hartman-Stampacchia theorem, J. Opti. Th. Appl. 74 (1992), 445-456.

- [4] G. Y. Chen and G. M. Cheng, Vector variational inequalities and vector optimization, Lecture Notes in Economics and Math. Systems 285, Springer Verlag. Berlin, 1987, 408-416.
- [5] G. Y. Chen and B. D. Craven, A vector variational inequality and optimization over an efficient set, Zeitscrift für Operations Research 3 (1990), 1-12.
- [6] G. Y. Chen and X. Q. Yang, The vector complementarity problem and its equivalences with the weak minimal element in ordered spaces, J. Math. Anal. Appl. 153 (1990), 136-158.
- [7] R. W. Cottle and J. C. Yao, Pseudo-monotone complementarity problems in Hilbert spaces, J. Opti. Th. Appl. 75 (1992), 281–295.
- [8] Ky Fan, A generalization of Tychonoff's fixed-point theorem, Mathematische Annalen 142 (1961), 305–310.
- [9] F. Giannessi, Theorems of alternative, quadratic programs, and complementarity problems, Variational Inequalities and Complementarity Problems (Cottle, Giannessi and Lions, eds.), John Wiley and Sons, New York, 1980.
- [10] _____, Vector Variational Inequality and Vector Equilibria, Mathematical Theories, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
- [11] P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Mathematica 115 (1966), 271–310.
- [12] G. Isac, A special variational inequality and the implicit complementarity problem, J. of the Faculty of Sciences, Univ. of Tokyo, Section IA, Mathematics 37 (1990), 109-127.
- [13] A. Khaliq, Generalized nonlinear vector quasi variational-like inequalities, Non-linear Analysis Forum 8 (2003), 1-9.
- [14] W. K. Kim and K. K. Tan, On generalized vector quasi-variational inequalities, Optimization 46 (1999), 185–198.
- [15] B. S. Lee, G. M. Lee and D. S. Kim, Generalized vector variational-like inequalities on locally convex Hausdorff topological vector spaces, Indian J. pure appl. Math. 28 (1997), 33-41.
- [16] G. M. Lee, D. S. Kim, B. S. Lee and S. J. Cho, Generalized vector variational inequality and fuzzy extension, Appl. Math. Lett. 6 (1993), 47-51.
- [17] G. M. Lee, B. S. Lee and S. S. Chang, On vector quasivariational inequalities, J. Math. Anal. Appl. 203 (1996), 626–639.
- [18] D. C. Luc, *Theory of Vector Optimization*, Lecture Notes in Econ. and Mathem. Systems, Vol. 319, Springer-Verlag, Berlin, 1989.
- [19] M. A. Noor. General variational inequality. Appl. Math. Lett. 1 (1988), 119-122.

- [20] S. Park. A unified approach to generalizations of the KKM-type theorems related to acyclic maps. Numer. Funct. Anal. & Optimiz. 15 (1994), 105-119.
- [21] A. H. Siddiqi, Q. H. Ansari and R. Ahmad. On vector variational-like inequalities. Indian J. pure appl. Math. 28 (1997), 1009–1016.
- [22] A. H. Siddiqi, Q. H. Ansari and A. Khaliq. On vector variational inequalities, J. Opti. Th. Appl. 84 (1995), 171–180.
- [23] N. X. Tan, Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Mathematische Nachrichten. 122 (1985), 231–245.
- [24] X. Q. Yang. Vector variational inequality and its duality. Nonlinear Anal. TMA 21 (1993), 869-877.
- [25] ______, Generalized convex functions and vector variational inequalities. J. Opti. Th. Appl. **79** (1993), 563-580.
- [26] N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces. J. Math. Econ. 12 (1983), 233-245.
- [27] P. L. Yu, Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives, J. Opti. Th. Appl. 14 (1974), 319–377.

Mee-Kwang Kang
Department of Mathematics,
Dongeui University,
Busan 614-714, Korea
E-mail:mee@deu.ac.kr

Byung-Soo Lee
Department of Mathematics,
Kyungsung University,
Busan 608-736. Korea
E-mail:bslee@ks.ac.kr