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GENERALIZED VECTOR QUASIVARIATIONAL-LIKE
INEQUALITIES

MEE-KwaNG KANG AND ByunG-Soo LEg*

Abstract. In this paper, we introduce two kinds of generalized
vector quasivariational-like inequalities for multivalued mappings
and show the existence of solutions to those variational inequalities

under compact and non-compact assumptions, respectively.

1. Introduction and Preliminaries

A vector variational inequality problem was firstly introduced in a
finite dimensional Euclidean space with its applications by Giannessi [9].
Later, many authors [1-6, 9, 10, 13-17, 21-25] have extensively studied
the problem in infinite dimensional spaces under different assumptions.
In particular, vector variational-like inequalities were considered in [1-2,
10, 13, 15] and vector quasivariational inequalities were considered in
[3-6, 10, 13, 14, 17, 23-25].

In this paper we introduce two kinds of generalized vector quasivar

iational-like inequality problems for multivalued mappings and show the

existence of solutions to our inequality problems.
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Let X and Y be topological spaces, and F : X — 2¥ a multivalued
mapping.

Definition 1.1. F is called upper semi-continuous (in short, u.s.c.) at
z € X if for each open set V in Y containing F'(x), there is an open set
U containing = such that F(u) CV for all w € U; F is called u.s.c. on
X if F is u.s.c. at every point of X. F is called lower semi-continuous
(in short, Ls.c.) at z € X if for each open set V in Y with F(z)NV # 0,
there is an open set U containing z such that F(u)NV # @ for all u € U;
F' is called ls.c. on X if F' is l.s.c. at every point of X. F is called

continuous at £ € X if F' is both u.s.c. and l.s.c. at x € X.

Lemma 1.1. Fis ls.c. at x € X if and only if for any y € F(z) and
for any net {z,} in X converging to z, there is a net {y,} such that

Yo € F(z4) for each «, and {y,} converges to y.

Definition 1.2. F is called closed if the graph G, F = {(z,y) € X x Y :
y € F(z)} of Fis closed in X x Y, i.e., for each z € X, {z,} C X with
Zo — = and each {y,} C Y with y, € F(z,) and y, — y, then we have
y € F(x).

Definition 1.3. F is called compact if F'(X) is contained in some com-

pact subset of Y.

Definition 1.4. Let F~ : Y — 2% be a multivalued mapping defined
by

r € F (y) ifandonlyif yé€ F(x).

F is said to have open lower sections if for cach y € Y, F~ (y) is open
in X.
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In an ordered Hausdorff topological vector space Z, usually a closed
convex pointed solid proper cone P in Z defines partial orders < and <
as

x<py it z—-ye—intP
r<py iff z—ye-P

for z, y € Z. To an arbitrary subset C of Z, the orders can be extended
by setting

C<p0 iff CC—intP

C<p0 iff CC-P

A point 2y in a nonempty subset C of Z is called a vector mazimal point
of C [27] if the set {z € C : zp <p z,z # 29} = 0, which is equivalent to

CN(zo+ P)= {20}

The following simple fact needed in our research was first introduced by

Luc;

Lemma 1.2 [18] Let C be a nonempty compact subset of an ordered
Banach space Z. Then maxC # 0, where max C denotes the set of all

vector maximal points of C.
2. Main results

Now we introduce P-convexity of a two variable function, which is

an essential concept to our results.

Definition 2.1. Let K be a nonempty convex subset of a vector space
X, and P a pointed. closed convex cone in a topological vector space
Z. which has an apex at the origin and a nonempty interior intP. A
multivalued mapping H : K x K — 27 is said to be P-convex with

respect to the first variable if for oy, 9. y € K, uy € H(ry,y). uy €
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H(zz,y) and A € [0, 1], there exists u € H(Az1 + (1 — A)z3,y) such that
Aup+ (1= ANug € u+ P.

Throughout this section, X, Y denote two Hausdorff topological vec-
tor spaces, and Z denotes an ordered Hausdorff topological vector space.
Let K be a nonempty convex subset of X, D a nonempty subset of ¥
and {C(z)lz € K} a family of solid convex cones in Z, that is, for
each z € K, intC(z) is nonempty and C(z) # Z. L(X, Z) denotes the
space of all continuous linear operators from X to Z. Let F : K — 20,
G:K—2K M:KxD— 2K%2) and H : K x K — 2% be multivalued
mappings, and n: X x X — X a mapping.

We consider the following two kinds of generalized vector quasivaria

tional-like inequalities for multivalued mappings;
(VQVLI); Find Z € K such that for each z € K there exists 5 € F(Z)
satisfying the following inequality;
max(M(Z,3),n(z, 2)) + u € —intC(Z)
for any z € G(z) and u € H(z,Z), where
max(M(z,5),n(z,z)) >= max (s,n(z,z))
sEM(z,5)

and (s,n(z,z)) denotes the evaluation of a continuous linear operator s
from X into Z at n(z, z),
(VQVLI); Find 7 € K and 5 € F(Z) such that

max(M(z,3).n(x, z)) + u € —intC(x)

forze K, z€ G(z) and u € H(z, ).
Putting H = 0 in (VQVLI); and (VQVLI);, we obtain the follow-

ing vector quasivariational-like inequalities:
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(VQVLI)] Find Z € K such that for any x € K there exists § € F(Z)
satisfying the following inequality;

max(M(z, 5),n(z, z)) € —intC(Z)

for z € G(z) and

(VQVLI), Find Z € K and 5 € F(Z) such that
max(M(z,3),n(z,z)) & —intC(Z)

for z € K and z € G(Z).

By replacing Y, H: K x K = 2% and M : K x D — 2MX.2) with Z,
H:KxK— Zand S: K — 2M%2) respectively in (VQVLI); and
(VQVLI)2, we obtain the following vector variational-like inequalities

for multivalued mappings;

(VVLI) Find 7 € K satisfying the following inequality;
max(S(z),n(z,2)) + H(x,z) ¢ —intC(Z)
for z € K and z € G(Z).

Putting H = 0 and G(z) = K in (VVLI), we obtain the following
vector variational-like inequalities for multivalued mappings, introduced
and studied by Chang, Thompson and Yuan [2];

(VVLI) Find z € K satisfying the following inequality;
max(S(z),n(x,z)) ¢ —intC(z) for z€ K.

Putting Z = Y, n(z,z) = 2 — 2 and H = 0, and replacing Al :
KxD — 2MX2) with S K — L(X,Y) in (VQVLI); and (VQVLI)»,

we have the following variational inequality;
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(VVI) Find 7 € K such that
(S(z),x — 2) ¢ —intC(z) forxr € K and z € G(7).

Putting C(z) = C for z € K and n(z,y) = z —y in (VVLI)', we
obtain the following vector-valued variational inequality considered by
Lee et al. [16];

Find & € K such that for each = € K, there exists 5§ € S(Z) such that
(8,2 =) Z-intc 0,
where ¢ ?py meansz —y € P.
Putting Z = R, L(X,Z) = X*, the dual of X and C(z) = R, the
positive orchant for z € K in (VVLI)’, we obtain the following scalar-

valued variational inequality considered by Cottle and Yao (7], Isac {12],
and Noor [19];

Find Z € K such that

sup (u,n(z,2)) >0, forz e K.
u€S(I)

Replacing S : K — 2MX.2) with § : X — L(X,Z) and putting
n(z,z) = = — g(z), where g : K — K is a mapping, then (VVLI)’
reduces to the following vector variational inequality (V'VI) considered
by Siddigi et al. [22];

(VVI) Find & € K such that

<S(i‘),$ - g(i» z—intC(i:) 09 forz € K.

Putting G(x) = {z} for x € K in (VVI) or g(z) = z for v € K
in (VVI)', we obtain the following vector-valued variational inequality
considered by Chen [3]:
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Find z € K such that
<S(f),$ - .f) Z—intC(i) 0, forxre K.

Putting C(z) = C and g(z) = z for z € K in (VVI)’, we obtain the
following vector-valued variational inequality considered by Chen et al.
3-5];

Find z € K such that
(S(z),z —Z) P—intc 0, for xz € K.

Putting Z =R, X =R, C(z) =R* forx € K CR", L(X,Z) = R"
and n(z,y) = = — y, we obtain the following scalar-valued variational
inequality considered by Hartman and Stampacchia [11]; find z € K
such that

(S(z),x—z) >0 forze K.

2.1. Compact set case

When we consider the existence of solutions to (VQVLI); for the
compact set case, Ky Fan’s Section Theorem in [8] is very useful and

indispensable.

Theorem 2.1 [8]. Let K be a nonempty compact convex subset of a
Hausdorff topological vector space. Let A be a subset of K x K having
the following properties
(i) (z,z) € Afor all z € K;
(i) for any z € K, the set Az :={y € K : (z,y) € A} is closed in K;
(i) for any y € K, the set AY := {z € K : (z,y) € A} is convex or
empty in K.
Then there exists § € K such that K x {7} C A.
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The following main theorem for the existence of solutions to (VQVLI);

is for the compact set case.

Theorem 2.2. Let K be a nonempty compact convex subset of X and
D a nonempty subset of Y. Let F : K — 2P be closed, G : K — 2K be
l.s.c. and nonempty convex-valued, M : K x D — 2L(X:2) be nonempty
compact-valued, and a multivalued mapping W : K — 2% defined by
W(z) = Z\{—-intC(z)}, z € K, closed. Let n: X x X — X be linear,
and H : K x K — 2% be P-convex with respect to the first variable and

L.s.c. with respect to the second, where P := (| C(xz).
zeK
Suppose further that

(1) (M(z,-),n(z,)) =0 and H(z,z) = {0} for all z € K

(2) F is compact; and

(3) max(M (Yo, $a), n(x, 24)) converges to max(M (y, s),n(z, z)) pro-
vided that yo — ¥, so — s and z, — z.

Then (VQVLI); is solvable.

Proof. By the assumption that A is nonempty compact-valued, from
the continuity of (-,-), (M (y, s),n(z, z)) is compact in Z. So we can de-
fine A = {(z,y) € K x K : there exists s € F(y) such that max(M (y, s),
n(z,2)) + u € —intC(y) for any z € G(y) and v € H(x,y)}. By the
condition (1), it is easily shown that (z,z) € A for all x € K. Next,
Az ={y € K : (z,y) € A}, € K is closed. In fact, let {y,} be a net
in A; such that y, — y. Then by Lemma 1.1, for any z € G(y) there
exists a net {z,} converging to z such that z, € G(y,) for each a. Also
by the lower semi-continuity of H with respect to the second variable,
for any u € H(z,y) there exists a net {us} converging to u such that
uq € H(r,yq) for each a. Since y, € A, we can choose s, € F(y,) such
that

max(M(ya. Sa). (2. 20)) + ta € W(ya)
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for zo € G(ya) and uy € H(z,ys). By the condition (2) and the closed-
ness of F', we can assure the existence of limit s of {s,} such that

s € F(y). Hence by the condition (3) and the closedness of W, we have
max(M(y, s),n(z, z)) + v € W(y)

for any z € G(y) and v € H(z,y). Finally, AY = {z € K : (z,y) € A},
y € K is convex. Indeed, let z;, zo € AY and XA € [0,1]. Then from
the fact that (z1,y) ¢ A, for any s € F(y) there exist z; € G(y) and
w1 € H(z1,y) such that

max{M (y, s),n(z1,21)) + u1 € —intC(y)

and from the fact that (z2,y) € A, for any s € F(y) there exist z9 € G(y)
and uz € H(xo,y) such that

max(M (y, s),n(x2, 22)) + ug € —intC(y).

Hence, for any s € F(y) there exist u € H(Az; + (1 — A)z2,y) and
z:=Az1 + (1 = Nz € G(y) for A € [0,1] such that

max(M(y, s),n(Az1 + (1 — X)z2,2)) +u

= max(M(y, s),n(Az1 + (1 — Nz, Az1 + (1 — AN)z2)) + u

= max(M(y, s), An(z1, 21) + (1 = A)n(z2, 22)) + u

< Amax(M(y, 5),7(z1, 21)) + (1 = \) max(M(y, s), n(z2, 22)) +

€ Amax{M(y,s),n(x1,z1)) + (1 — A) max(M(y, s), n{x2, z2)) + Au;
+(1-=XNus— P

A(max(M (y, s),n(z1, 21)) + u1) + (1 = A)(max(M(y, s),n(z2, 22))
+ug) — P

C —intC(y) —intC(y) - Cly)

= —intC(y).
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Thus Azy + (1 — A)ze € AY, which shows that AY is convex. Hence by
Ky Fan’s Section Theorem there exists € K such that

K x {z} C A,
which implies that for any x € K, there exists § € F'(Z) such that
max(M(z,3s),n(z, z)) + u & —intC(T)

for z € G(Z) and v € H(z,Z). This completes the proof.
2.2. Noncompact set case

For considering the existence of solutions to (VQVLI)2 for noncom-
pact set case, we use the following particular form of the generalized Ky
Fan’s Section Theorem due to Park [20].

Theorem 2.3. Let K be a nonempty convex subset of X and A C Kx K
satisfy the following conditions;

(i) (z,x) € A,z € K

(i) A, ={ye K :(z,y) € A}, z € K, is closed;

(§) AY={z € K : (z,y) € A}, y € K, is convex or empty;

(iv) there exists a nonempty compact subset B of K such that for each
finite subset V of K there exists a nonempty compact convex subset Ly

of K containing N such that
Lvn{ye K :(z,y) € Aforany r € Ly} C B.

Then there exists a yg € B such that K x {yo} C A.

In particular, if K = B, that is, K is a compact convex subset of X.
then the condition () is obviously true, thus the three conditons of Ky
Fan's Section Theorem are sufficient to show the existence of yg € K

such that K x {yo} C A.
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To show the existence of solutions to (VQVLI); for the noncompact

set case, the following lemmas are essential .

Lemma 2.4. Let K be a nonempty convex subset of X and D be
a nonemtpy subset of Y. Let f : K — D be a continuous function,
M : K x D — 2MX2) be nonempty compact-valued, and G : K —
2K a l.s.c. mapping with nonempty convex-values. Let a multivalued
mapping W : K — 2% defined by W(z) = Z\{—intC(z)}, z € K, be
closed. Let n: X x X — X be linear and H : K x K — 22 P-convex
with respect to the first variable and ls.c. with respect to the second,

where P = [ C(z). Suppose further that
zeK
(1) (M(z,-),n(z,-)) = 0 and H(z,z) = {0} for all z € K,

(2) max(M (Ya, Sa)» 1(T, za)) converges to max(M (y, s),n(z, z)) pro-
vided that y, — ¥y, So — s and 2o — 2;

(3) there is a nonempty compact subset B of K such that for each
nonempty finite subset N of K, there is a nonempty compact convex
subset Ly of K containing N such that for y € Ly\B, there exist
r € Ly, z € G(y) and u € H(x,y) such that

max (M (y, f(y)). n(z, z)) + v € —intC(y).
Then there exists T € K such that

max(M(z, f(z)),n(z,z)) + u & —intC(T)
for any 7 € K, 2 € G(Z) and v € H(x. 7).
Proof. Let A = {(z,y) € K x K : max(M(y. f(y)).n(x.2)) + u &
—intC(y) for any z € G(y) and u € H(x,y)}. It is easily shown that
(r,r) € A for z € K from the condition (2). And A, = {y € K :
(r,y) € A}, z € K, is closed. In fact, for any net {y,} in 4, converging

to y. we have max(M (Yo, f(ya)) . n(r. 20)) + uq & —intC(y,) for any

2a € G(yo) and u, € H(2.ys). From Lemma 2.1 and the condition
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(1), max(M(y, f(y)),n(z,z)) + u € —intC(y) for any z € G(y) and
u € H(z,y), we have y € A, showing the closedness of A, for z € K.
By a similar method shown in the proof of Theorem 2.2, we can show
that the set AY = {z € K|(z,y) € A}, y € K, is convex. Further note
that the assumption (3) implies that for y € Ly\B there exists z € Ly
such that y ¢ A;. Hence the condition (i) of Theorem 2.3 is satisfied.
Hence there exists T € K such that

max(M(z, f(z)),n(z, 2)) + u € —intC(Z)

forx € K, z € G(%) and v € H(z,Z). This completes the proof.

Lemma 2.5 [26]. Let X be a paracompact Hausdorff topological space
and Y a topological vector space. Let F : X — 2Y be a multivalued
mapping with nonempty convex-values. If F' has open lower sections,
then there exists a continuous function f : X — ¥ such that f(z) € F(z)
forx € X.

Now we consider the existence of solution to (VQVLI)s.

Theorem 2.6. Let K be a nonempty paracompact convex subset of X
and D a nonemtpy convex subset of Y. Let F': K — 2P have nonempty
convex-values and open lower sections, G : K — 2K be a l.s.c. mapping
with nonempty convex-values, M : K x D — 2L(X.Z) pe nonempty
compact-valued, and W : K — 27 defined by W(z) = Z\{—intC(x)},
7 € K, closed. Let n: X x X — X be linear and H : K x K — 2% be
P-convex with respect to the first variable and L.s.c. with respect to the

second, where P = (| C(x).
€K
Suppose further that

(1) (M(z,-),n(z.-)) =0 and H(z,z) = {0} forall z € K,
(2) max(M(ya,Sa).n(z, 20)) — max(M(y.s),n(z.z)) provided that

Yo — Y, Sa — s and z, — z,
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(3) F is compact,

(4) there is a nonempty compact subset B of K such that for any
nonempty finite subset N of K, there is a nonempty compact convex
subset Ly of K containing N such that for any y € Ly\B, there exist
x € Ly, z € G(y) and u € H(zx,y) such that

max(]\/l(y, S)a 77(537 Z)> tuc —th’(y)

for any s € F(y).
Then (VQVLI), is solvable, i.e., there exist Z € K and 5 € F(Z) such
that

max(M(Z,§),n(z,2)) + u & —intC(Z)

forany z € K, 2z € G(Z) and u € H(z, ).

Proof. Since F~(y) is open in X for y € D, by Lemma 2.5 there exists
a continuous function f: K — D such that f(z) € F(z) for x € K. So,
by Lemma 2.4 there exists £ € K such that

max(M(z, f(z)),n(z, 2)) + u & —intC(Z)

for any z € K, z € G(Z) and v € H(z,Z). This completes the proof.
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