Honam Mathematical J. 26(2004), No. 4, pp. 509-532

EIGHT-DIMENSIONAL EINSTEIN’S CONNECTION
FOR THE SECOND CLASS
I. THE RECURRENCE RELATIONS IN 8-¢g-UFT

KyunGg TAE CHUNG, SO0 KYUNG HAN, AND IN Ho HwAaNG

Abstract. Lower dimensional cases of Einstein’s connection were
already investigated by many authors for n = 2,3,4,5,6,7. This
paper is the first part of the following series of two papers, in which
we obtain a surveyable tensorial representation of 8-dimensional
Einstein’s connection in terms of the unified field tensor, with main
emphasis on the derivation of powerful and useful recurrence rela-
tions which hold in 8-dimensional Einstein’s unified field theory (i.e.,
8-g-UFT):

I. The recurrence relations in 8-g-UFT

II. The Einstein’s connection in 8-g-UFT

All considerations in these papers are restricted to the second
class only, since the case of the first class are done in [1], [2] and
the case of the third class, the simplest case, was already studied

by many authors.

1. INTRODUCTION.

In Appendix II to his last book Einstein ([14],1950) proposed a new
unified field theory that would include both gravitation and electromag-
netism. Although the intent of this theory is physical, its exposition is

mainly geometrical. Characterizing Einstein’s unified field theory as a

Received October 14,2004; Accepted November 1,2004.

2000 Mathematics Subject Classification :83E50, 83C05, 58A05.

Key words and phrases : the 8-dimensional generalized Riemannian manifold,
the recurrence relations and Einstein’s connection in 8-g-UFT.

This research was supported by University of Incheon Research Grant, 2001.



510 Kyung Tae Chung, Soo Kyung Han, and In Ho Hwang

set of geometrical postulates in the space-time X4, Hlavatg([15],1957)
gave its mathematical foundation for the first time. Since then Hlavaty
and number of mathematicians contributed for the development of this

theory and obtained many geometrical consequences of these postulates.

Generalizing X4 to n-dimensional generalized Riemannian manifold
Xn, n-dimensional generalization of this theory, so called Einstein’s
n-dimensional unified field theory (n-g-UFT hereafter), had been at-
tempted by Wrede([18],1958) and Mishra([17},1959). On the other hand,
corresponding to n-g-UFT, Chung([1], 1963) introduced a new unified
field theory, called the Einstein’s n-dimensional *g-unified field theory(n-
*g-UFT hereafter). This theory is more useful than n-¢g-UFT in some
physical aspects. Chung and et al obtained many results concerning this
theory ([2],1969; [6],1981; [9],1988; [10]-[11],1998), particularly proving
that n-*g-UFT is equivalent to n-g-UFT so far as the classes and indices
of inertia are concerned ([8],1985). The case of the third class, which is
the simplest case of both unified field theories, was completely studied
for a general n by many authors([17], [18], [9], etc.). However, in the
cases of the first and second class of both n-dimensional generalizations,
it has been unable yet to represent the general n-dimensional Einstein’s
connection in a surveyable tensorial form in terms of the unified field
tensor gy,. This is probably due to the complexity of the higher dimen-

sions.

However, the lower dimensional cases of the Einstein’s connection
in n-g-UFT were investigated by many authors: 2-dimensional case by
Jakubowicz([16}, 1969) and Chung et al([7], 1983), 3-dimensional case by
Chung et al([3]-[5], 1979-1981), and 4-dimensional case by Hlavaty([15],
1957) and many other geometricians. Recently, Chung et al also studied
the Einstein’s connection in 4-*¢-UFT([1], 1963), in 3-and 5-*¢g-UFT([9],
1988), and in 6-¢g-UFT([12]-[13]. 1999), and obtained respective Ein-

stein’s connection in a surveyable tensorial form.
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The purpose of the present paper, the first part of a series of two
papers, is to derive powerful recurrence relations which hold in 8-g-
UFT. In the second part, we prove a necessary and sufficient condition
for the existence and uniqueness of the Einstein’s connection in 8-g-
UFT and establish a linear system of equations for the solution of 8-
dimensional Einstein’s connection for the second class, employing the
powerful recurrence relations obtained in Part I.

All considerations in this and subsequent papers are dealt for the sec-

ond class only.
2. PRELIMINARIES.

This section is a brief collection of basic concepts, notations, and re-
sults, which are needed in our subsequent considerations. They are due
to Chung([1],1963; [9],1988), Hlavaty([15],1957) and Mishra([17],1959).

All considerations in this section are dealt for a general n > 1.

2.1. n-dimensional g-unified field theory.

The Einstein’s n-dimensional unified field theory, denoted by n-g-
UFT, is an n-dimensional generalization of the usual Einstein’s 4-dimen
sional unified field theory in the space-time X4. It is based on the fol-

lowing three principles as indicated by Hlavaty([15]).

Principle A. Let X,, be an n-dimensional generalized Riemannian
manifold referred to a real coordinate system z*, which obeys the coor-

. . : .
dinate transformation ¥ — z* ! for which
ox’'
(2.1) det(—) #0
Ox
'Throughout the present paper, Greek indices are used for the holonomic com-
ponents of tensors, while Roman indices are used for the nonholonomic components
of a tensor in X,. All indices take the values 1.2.---  n, and follow the summation

convention with the exception of nonholonomic indices x. y. z. 1.
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In n-g-UFT the manifold X,, is endowed with a real nonsymmetric tensor
9xu, called the unified field tensor of X,,. This tensor may be decomposed

into its symmetric part hy, and skew-symmetric part ky,:
(2.2a) D = Mo + ko

where

(2.2b) g = det(gx,) # 0, h = det(hy,) # 0,k = det(ky,)
We may define a unique tensor A** = h** by

(2.3) haph™ =8,

In n-g-UF'T the tensors hy, and RN will serve for raising and/or low-

ering indices of tensors in X, in the usual manner.

Principle B. The differential geometric structure on X, is imposed
by the tensor gy, by means of a connection I”)’\“ defined by a system of

equations

(2'4) ' D, Dy = QSwua Ira

Here D, denotes the symbolic vector of the covariant derivative with

v

respect to I'§ | and S),” is the torsion tensor of I"/(ﬂ. The connection

%, satisfying (2.4) is called the Einstein’s connection. Under certain

conditions the system (2.4) admits a unique solution ',

Principle C. In order to obtain g), involved in the solution for FK#

certain conditions are imposed. These conditions may be condensed to
(2.5) Sy =S =0, Ry = 9,Xy

where X is an arbitrary non-zero vector, and R,,)" and R, are the

curvature tensors of I'y | defined by

(2.6) Roun” = 2000 "w) + Lo %0))s Bux = Rapn®
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2.2. Algebraic preliminaries.
In this subsection, notations, concepts, and several algebraic results

in n-g-UFT are introduced.

(i) Notations. The following scalars, tensors, and notations are
frequently used in our further considerations:

g 4
: == k=~
(2.7a) g b’ b

(27b) KP = k[alal k,a202 e kap]apv (p = 07 17 27 Tt )
(276) (O)k)\u — (SK’ (l)k)\l/ _ k)‘u7 (P)k)\ll — (P—l)k)\a kau’ (p — 1, 27 .. )

(2.7d) Koy = Vikup + Vkuy + V ko,

0, ifniseven

1, if nisodd

(2.7¢) o=

where V,, is the symbolic vector of covariant derivative with respect to
the Christoffel symbols { /\';} defined by h,,. It has been shown that the

scalars and tensors intorduced in (2.7) satisfy

2.8a Ko=1K,=kifnis even, and K, = 0 if p is odd
( ) p p

(2.8b) =1+Ko+ -+ Kn_o

(2.8¢) (p)k)\u — (—l)p(p)k,‘,\, P A = (—1)PP) A

Furthermore, we also use the following useful abbreviations, denoting

an arbitrary tensor T, skew-symmetric in the first two indices, by T:

pgr  pgr )
(2.9a) T =T,n= Topy Pk, Dk, P\
000
(2.9b) T=T,uw=T
pqr pgr pqr (pq)r pqr qpr

(2'90) 2Tw[)\u] = Tw/\u - TquaZ T WAy — Tw/\u + Tw)\;u etc
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We then have

pqr qpr
(2.10) T =T xop

(ii) Classification, basic vectors, and basic scalars.
DEFINITION 2.1 The tensor gy,(or ky,) is said to be :

1.of the first classif K,,_, #0

2.0f the second class with the jth category (j > 1) if

Ky #0, K510 = Kgjya = =Ky 5 =0
3.of the third class f Ko =Ky = - =K,,_ =0
The solution of the system of equations (2.4) is most conveniently

brought about in a nonholonomic frame of reference, which may be

introduced by the projectivity

(2.11) MA" = k,”A* (M a scalar)

DEFINITION 2.2 An eigenvector A of ky, that satisfies (2.11) is
called a basic vector in X,, and the corresponding eigenvalue M is

termed a basic scalar.
It has been shown that the basic scalars M are solutions of the char-

acteristic equation

(212)  MOM™° + KoM™ 27 4. 4+ K, 9 oM*+ K,_y) =0

(iii) Nonholonomic frame of reference.
In the first and second class, we have a set of n linearly independent

. . . . k3 .
basic vectors — AY(2 = 1,--- .n) and a unique reciprocal set — Ay (i =
3
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1,---,n), satisfying
J A i
(2.13) AyAN = 6], ANAY = 8%
1 1
With these two sets of vectors, we may construct a nonholonomic frame

of reference as follows:

DEFINITION 2.3 If T} are holonomic components of a tensor, then

its nonholonomic components T;j_'_' are defined by
(2.14a) Ti =Ty Ay A
J

An easy inspection shows that

. J
(2.14b) Ty =TiiAY - Ay

Furthermore, if M is the basic scalar corresponding to A”, then the
x xr

nonholonomic components of ®ky* are given by

(2.15) Pt = MPSE, Pk, = MPhy,, PE™ =— MPh™
jeod x T
Without loss of generality we may choose the nonholonomic components
of h)\ﬂ as
(2.16) hig=h3y=-=hp 1 6no=1

ohpi, = 5},, the remaining h;; = 0

where the index i is taken so that Det(h;;) # 0 when n is odd.

2.3. Differential geometric preliminaries.
In this subsection, we present several useful results involving Ein-
stein’s connection. These results are needed in our subsequent consid-

erations for the solution of (2.4).



516 Kyung Tae Chung, Soo Kyung Han, and In Ho Hwang

If the system (2.4) admits a solution I'j , it must be of the form

v v v v
(2.17) ,\“:{)\u}-FS,\H +U"
where
001
(218) Uu)\p =28 v(Ap)

The above two relations show that our problem of determining FK” in
terms of g, is reduced to that of studying the tensor Sy,”. On the other

hand, it has been shown that the tensor S5)," satisfies

(110)
(2.19) S=B-3S
where
(2.20) 2Buus = Kuw + 3K|apkuk,”

Therefore, the Einstein’s connection I'Y = satisfying (2.4) may be de-
termined if the solution Sy," of the system (2.19) is found. The main
purpose of the present paper is to find a device to solve the system (2.19)

when n = 8.

Furthermore, for the first two classes, the nonholonomic solution of
(2.19) is given by

(2.21@) MSzyz = B:I:yz

TYz

or equivalently

(2.21b) 2£I£Szyz = Ky, + 3K[1yZ]JZHZ[

where

(2.22) M=1+MM+MM+ MM
Yz r oy Yy 2 zZ x

Therefore, in virtue of (2.21), we see that a necessary and sufficient

nonholonomic conditions for the system (2.4) to have a unique solution
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in the first two classes is

2.23 M # 0 for all x,y,z

TYz

3. THE RECURRENCE RELATIONS OF THE FIRST
KIND IN n-g-UFT.

This section is devoted to the derivation of the recurrence relations
of the first kind and two other useful relations which hold in n-g-UFT.
All considerations in this section are also dealt for a generaln > 1.

The recurrence relations of the first kind in n-g-UFT are those which
are satisfied by the tensors (P'ky”. These relations will be proved in the

following theorem.

THEOREM 3.1 (The recurrence relations of the first kind in

n-g-UFT). The tensors Pk, satisfy the following recurrence relations:

(For the second class with the jth category).

(3.1a) (24P v 4 (2= v Ly sz(p)k/\v -0

which may be condensed to

2j
(3.1b) ZKf(zj“’_f)k)\" =0,(p=1,2,---)
f=0

Proof. The case of the second class with the jth category. When
gxu belongs to the second class with the jth category, the characteristic

equation (2.12) is reduced to

2j 2j
(3.2a) STKpMTS = M S KM =0
f=0 f=0
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Hence, if — M is a root of (3.2a), it satisfies
x

2j 25
(3.2b) M > I EEDY KpM#=1+ =0
f=0 f=0

In virtue of (2.15), multiplication of &% to both sides of (3.2b) gives

2j
(3.3a) S KA =0
F=0

The holonomic form of (3.3a) is
27

(3.3b) > K@ ge =g
£=0

Consequently, the relation (3.2) follows by multiplying ®~Dk,” to both
sides of (3.3b).

REMARK 3.2 When g,, belongs to the second class with the first
category, the relation (3.1) is reduced to

(34) (p+2)k,\u + KQ(p)k,\V = 07 (p = 17 2a o )

In the following two theorems we prove two useful relations.

THEOREM 3.3 (For the second class). In the second class, a

tensor T, skew-symmetric in the first two indices, satisfies

(pg)r e s Y 2
(3.5a) T o= Toy: MPMO M AALA,
Ir,Yy,2
r(pq) T Y z
(3.5b) IEDY TI[yZ]JZI(PJZI‘?)]gI A ALA,

Tr.Yy,2
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Proof Making use of (2.14b) and (2.16), the relation (3.5a) may be

proved as in the following way:

(pg)r (pe)r z y =
T wpy = Z T a:yzAwA,uAu

.Y,z
1 . . . . T Yy =z
= 3 Z Tk Pk, Ok, + @, P 3 k4 4,4,
€Y,z

LN M MM MTA A A
—§Zzyz(zy+xy)zwuu

z,Y,2z

The second relation (3.5b) can be proved similarly.

THEOREM 3.4 (For all classes). The tensor B,,,, given by (2.20),

satisfies

(pa)r  (p@)r (') @or" (pg)
S

(3.6) B=5+ S + 5 +

(pg)r (pg)r ') @ o (pg' )’
(37) 2 B Wy — K Wiy + K wuv + K U[u}p] + K V[UJIL}
where
(3.8) '=p+1,d =q+ 1,7 =r+1

Proof. In virtue of (2.9) and (2.19), the relation (3.6) may be shown as

in the following way:

(pg)r (pa)r 1
B = B wpy = 5 ‘B‘)[ﬁ’7 [(P)k.wa (Q)k#ﬂ + (Q)kwa (p)kﬂﬁ] (T)kV'y

1
- 5[5057 + Sery ka“ kg" + SeBn ka® Ky + Saen kﬂc kvn] x
x [P, (Q)k#ﬁ + @ @ (p)kuﬁ] Mg,

After a lengthy calculation, we note that the right-hand side of the
above equation is equal to (3.6). The relation (3.7) may be proved sim-

ilarly.
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4. THE RECURRENCE RELATIONS OF THE SECOND
AND THIRD KIND IN 8-g-UFT.

This section is particularly concerned with the 8-dimensional case;
that is with 8-g-UFT. In this section, we first investigate the basic scalars
and some relations satisfied by them. In order to obtain a tensorial rep-
resentation of the 8-dimensional Einstein’s connection FK# in terms of
9xu, we need powerful recurrence relations of the third kind which are
satisfied by an arbitrary tensor 1., , skew-symmetric in the first two
indices. Therefore, we finally derive these relations, after introducing
the recurrence relations of the second kind which are satisfied by the

basic scalars. All considerations in this section are restricted to n = 8.

In 8-g-UFT there are five cases; that is, the unified field tensor gy,
belongs to

(1) the first class, if Kg #0

(2) the second class with the first category, if Ko # 0, K4 = K¢ =
Kg =0

(3) the second class with the second category, if K4 # 0, K¢ = Kg =0

(4) the second class with the third category, ifK¢ # 0, Kg = 0

(5)the third class, if Ky = K4 = K¢ = Kg =0

In this section we investigate the cases of (2), (3) and (4).

Before we start investigations about the basic scalars, we first note
that in 8-¢g-UFT the relation (2.8b) is reduced to

(4.1) g:1+K2+K4+K6+Kg

and formally state in the following theorem the recurrence relations of

the first kind when n = 8, which are direct consequences of (3.1) :
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THEOREM 4.1 (The recurrence relations of the first kind in
8-g-UFT). The tensors Pk, satisfy the following recurrence relations
in 8-¢-UFT for p=10,1,2,---:

class and category Recurrence relations of the first kind

in 8-g-UFT

(4.2a) | The second class with [P0 kY = —K, P+0,v — K, P2, v
the third category —Kg PkyY

(4.2b) | The second class with POV = — K, 02|,y — K, P\

the second category

(4.2¢) | The second class with Py = — Ky Pkyv
the first category

Proof The relations (4.2) are direct consequences of (3.1).

THEOREM 4.2 The basic scalars in 8-g-UFT are given by

class and category The basic scalars M
(4.3a) [The second class with ]\1/1 = —]\24 = \/—% +a+g
K
the third category ]\3/1 = —]\44 = \/—?2 + wa + w?g
— - K, 2

Jgf——]\g—\/—?-{-w o+ wl
M=M=0

7 8
(4.3b) [The second class with ]\1/[ = —]g[ =v-L-K
the second category Jg[ = ~Jh£f =vL-K
M=M=M=M=0

5 6 8
(4.3¢) [The second class with ]\11' = —]g[ =v-Ky#0
the first category M=M=M=M=M=M=0

3 4 5 6 7
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where

(4.4a)

(4.4d)

(Ka)?

6= Ki— -~

7¢:K6_

=1+ V3

— (K
5+ 27( 2)

Ko K»
[ = /(=) - K, K = —=
(2) o 2

Proof. The relations (4.3) may be obtained from (4.3) and (4.4) in [1]

by substituting the corresponding condition of each case.

THEOREM 4.3 The basic scalars — M in 8-¢g-UFT satisfy the fol-

lowing relations:

class and category

The basic scalars M
e sl

the first category

(4.5a) [The second class with ]\14 + AQ’[ = ]%1 + JZI = ]\5/[ + ]\éf = ]\7/1 + Jgf =0
the third category MM=0, MMM=0
z d z Yy d
M? + Jgf? +M?* = —K,
a C
M2M? + M?>M? + M*>M? = K,
a b a c b c
M?M?M? = — K
a b C
(4.5b) [The second class with All + ]gf = ]%I + JZI = Jgf + Z%[ = ]¥[ + ]\é[ =0
the second category MM=MM=MM=20
a T b Ty
M? + Al;ﬂ = Ko, MQZlV)IQ = Ky
a a
(4.5¢) [The second class with Jg[ + AQ[ = ]!;'I + ]\4[ =M+ Z%I = A71 + J\é[ =0

MM = Ko, MM = MM = MM =0
1 2 1z 2 x Tz Yy
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Here, the indices a, b, ¢, d are assumed to take values asa =1,2; b=
3,4, ¢c=5,6; d=17,8.

Proof. The relations (4.5a), (4.5b) and (4.5¢) follow from (4.3a), (4.3b)
and (4.3c), respectively.

Using the relations given in Theorem (4.3), we may prove the recur-

rence relations of the second kind in the following theorem.

THEOREM 4.4 (The recurrence relations of the second kind
in 8-¢g-UFT). In 8-g-UFT the basic scalars M satisfy the following re-

currence relations which hold for all values of z and y when = # y:
(For the second class with the third category)

(4.6a)  MOMO = —pmUMY — MOM? — KMBMY
T Yy x Yy x Yy x Y
—KoMCMY — Ky MO MY
x Yy T Yy
(4.6b)  2MOMY = —M3M3 - 2K MCMY — KyMM
T Yy z Yy T ) 'y
(4.6c) MOM? = —MUMYD — KoMCM? + KeM M
z Yy T Yy e Y x Yy
(4.6d) 2MOMP = —M*M* — KoMPM? 4+ K,M2M? +
T Yy z Yy T Yy z Yy
+2Ks MM + KgMM
T y T Yy
(4.6e)  MOMY = KyMOM? + KeMOMY + KeMZMY
T Yy x Yy x Yy z Yy

(4.6f)  M°MP® = KoMAM* + 2K, MU MY + 2K MU MO
T Yy x Yy T Yy 4 Yy

+ K MM + 2KgMOMY + KgM?M?
x Yy T Y z Y
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Furthermore, we also have

(4.7a)

(4.7b)

(4.7¢)

(4.7d)

(4.7¢)

(4.7f)

KoMG A0 — prGpr2)
e Yy T Yy

— ]‘3(4]‘33) _ sz\g(%;[l) _ (K2)2]¥.I(3]\y40)
—(K2)2J\;I(2]\y/ll) — (KoK + Kﬁ)]\f(l‘l‘f{))
KyMOM® 4 MG
z 'y z y
= (K¢ — K2K4)]\;[(3J\y/lo) - K4]\x/[(41\y/[1) — (K4)?
Ag(lﬂyfl") + (Ko — K2Kq)M© - MY
K6]\I4(5Ay/[0) + K2]\;I(5]\;I4)
= —st\g(”\;ﬂ) — (Ke — K2K4)]\f(3¥2) — K4K61\;f(1]\y/-’0)
Kﬁ]\f(sﬂfo) 4 K‘*Az/[(sj\f?)
- _K41\z4<41\y43> - K@g“]\yﬂ) — (K2K4 + Kg)
Agf[(3]\y/12) _ K2K6]y(31\y40) _ KQKGJ\xJ@]\;Il)
2K2]y(5]\;11) _ 2]\51(5]\;[3)
_ ]\;14]\1144 _ 2(K2)2]\;[(3]b11) _ K4]¥[2]\1/42
—(K>Ks + Kg) MM — 2K6]\;I(2]\;I°)
2K6]ZI(51\;[1) + 2K4A$4<51513>
= —K4]&I4J?\jl4 — (k2K4 + Kﬁ)z\f‘zy"‘ — 2K, K
zy<31y“ + (K4)21\z421§12 + 2K4K6]\;[(211LJI0)
2K6121<51511) + K21y51\y45
= 2K2K4]g[(4]5[2) + 2K2K61g<41§/40> + (Ko K4 — KG)J&I:"JZIE'

+KoKeM?M? — K K¢MM + (K)2M*M*
€z Y Ty r y
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(4.71)

(4.7k)

(4.70)
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AfSAyJS + 2K4]\$/[(5]\;[1)
= 2K4]\;[(4J\y/12) +2(Kg — K2K4)J\f<31\y41> + szgmyﬁ
+Ko MM — (K4)2]\;H\y/[ + 2K61\g<41\y40>
K4AJ§,(5]Z[2) i KQA:E/[(sj\y/‘,@
= _K4]\g(4]\;r3) + KQKGJ\g(ZJ\fl) + KzKﬁf\;-’@]\;Il)
+K2K61\Z4(31\y40> + K4K61\Z4<1J\y40>
2K4]\£(5]\y43) + sz\gs]\;[s
= ((K3)? - K4)1‘;’41\y/f4 +((Ka)? + Kszs)J\z/fzf\ljf2
+2K KoM MO
2K2K4]\z/[(4]\y/12) + 2K2K61\;I(3J\y/11) + 2K4K61\z4(2]\y([°)
+KaKgMM
2K21\14(5]\;I3) + A;ISAJIS
- 2}(41\354(41\;12) + 2K6]ZI(3J\y/Il) + (K, - (KQ)Q)JZIE‘]\;F’
+(Kg + K2K4)1\z421\y42 + 2K6]\z4(4]\;[°)

+2K3KeMP MY + KyKeM M
fed Y Ty

9KsMC M3 — K, MM
T y T oy

= — (Ko Ky + Kg)M*M* — ((K4)? + Ko K¢) M3 M?
r oy r y
—2K4Ke MG MY
z Yy
—2((K) )MUM? - 2K, KeMAM® + 2(Kg)*M 200
x Yy z Yy z y

+(Ke)*MM

Ty
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(For the second class with the second category).

(4.8a) ]\;[(3 ]\;[0) = _j\;[@ ]Z[l) — K, ]\14(1 ]\y/IO)

(480) DA =M KA - Ko MM
(4.8¢) ]\I4(3 A@jﬂ) =K, ]g[(l ]\;/0)

(48d)  MOM® =Ko MPM®+ 2K, MO MO 4+ Ky MM

Furthermore, we have
(4.9a) K4]\;[(3 J\y40> + K> J\IN J\yﬂ = —K41\z4<2 J\yﬂ
(4.9b) 2K4J\I4<3 Ay41> + Ko M® ]ZIB
= ((K2)? = K)M? M? + 205 KM@ MO + (Kq)*M° MO

(4.9¢) 2K, MO MY 4+ M3 M3
T Yy x y

= —((K2)* = KM M + 2K M@ MO + Ko Ky MO M°

(For the second class with the first category).
(4.10) ]\1/1 ]g[ =K,

Proof. The proof of the relations in (4.6), (4.7), (4.8), (4.9)
and (4.10). These relations may be obtained from (4.7) and (4.8) in

(1] by substituting the corresponding conditions of each case.

Now, we are ready to prove the recurrence relations of the third kind
in the following theorem. These relations are very important for the
solution of (2.4) or (2.19) in 8-g-UFT. We use these relations in our
subsequent paper to establish a linear system equivalent to (2.4) and to
find a precise and surveyable tensorial representation of 8-dimensional

Einstein’s connection in terms of the unified field tensor gy,.



I. The recurrence relations in 8-g-UF 527

THEOREM 4.5 (The recurrence relations of the third kind in
8-g-UFT). If T is a skew-symmetric tensor in the first two indices, the

following recurrence relations hold in 8-g-UFT:

(For the second class with the third category).

(4.11a)
(4.11b)
(4.11¢)
(4.11d)

(4.11e)

(4.11f)

(50)r anr  (32)r (30)r 21)r (10)r
T =—-T - T -Ko T —KyT —KyT
(51)r 33r BLr 11r
2T =-T —2Ko T —K4T
(52)r (43)r (32)r (10)r
T =-T -Ky T +Kg T
(63)r 44r 33r 22r (20)r 11r
2T =-T —-KoT +KyT +2K¢ T +KgT
(54)r 32)r (30)r 21)r
T =K4 T +K¢g T +Kg T
551 44r (42)r (40)r 33r
T =Ky, T+2K4 T +2K¢ T +K4T +
(31)r 221

+2K¢ T +Ke T

Furthermore, the following identities also hold in the second class with

the third category:

(4.12a)

(4.12b)

(4.12¢)

(4.12d)

(50)r  (52)r
Ky T — T

(43)r (41)r (30)7‘ (21)r (10)r
=T -Ky T — (KQ) T — (KQ) T — (KoK + Kﬁ) T
(50)r  (54)r

KiT + T
(30)r (4D)r 9 (10)r 2)r
— (Kg— KoK)) T — Ky T ~(K)2 T — (Koky — Kg) T
(50)r (54)r
KeT +Ky T
(a1)r (10)r (32)r
=-—-K¢ T —KsKg T —(Kg—K2K4) T
(50)r (52)r
K¢ T +KyT
(43)r 4)r 2)r (30)r (32)r

=-K4 T —K¢gT —-KyK¢g T —KyKg T —(K2K4+I(6) T
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(4.12¢)

(4.12f)

(4.12g)

(4.12h)

(4.125)

(4.125)

(4.12k)

(4.121)

Kyung Tae Chung, Soo Kyung Han, and In Ho Hwang

(53)r (51)r
2T —-2K, T
44r (31)r 22r (20r)
=-T +2(K2) T +K,T +(K6+K2K4)T +2K¢ T
55r (51)7‘
KoT +2K¢ T
(42)r ST 22r 33r
=2K,Ks T +(K9)®T + KyKo T + (KoKy — Kg) T
11r (40)r
—K4sKe¢T + 2KoKeg T
55r (51)7‘
T +2K,4 T
(42)r 3BL)r 44r 22r
=2K, T +2(K6—K2K4) T +K;T +KgT
117‘ (40)7‘
—(K4) T +2Kg T
(53)r 557
2Ky T + KT
) 44y (42)r B)r
= ((KQ) — K4)T +2K9K4 T +2K3Kg T
(40)r (20)r 11r
+((K4) + KQKG) T +2KoKe T +2K4Kg T + KiKgT
(53)r  55p
2K T + T
(42)r (31)r
=2K4 T 4+2Kg T +(K4—(K2) )
227 (40)r (20)r 11r
+(Ke + KoK4) T +2K¢ T +2K3Kg T + KoKgT
557 (53)r
KisT —2K¢ T

44r (42)r
= (K2Ky + Ke) T +2(Kq)® T + ((K4)? + K2Kg)
33r (31)7‘ (40)7‘ (20)7‘ llr

T +2K4Ke T +2K4Ke T —2(Kg)? T — (Kg)*T
(54)r (52)r
Ko T +K; T
(43)r 2h)r (30)r (10)r
:—K4 T +K2K6 T +K2K6 T +K4K6 T
(53)r (51)r
2K, T +2Kg¢ T
44r (31)r o 22
=-K;T - (K2K4+K6)T —2K3Kg T +(K4) T
(20)r

+2K4ke T
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(For the second class with the second category).

(30)r (2)r (10)r
(4.13a) T = -T — Kk, 7

B1)r 22r 1lr 00r
(4.13b) 9T = -T KT +K4T

32)r .
(4.13¢) T = K71

33r 22r (20)r 1ir

(4.13d) T = KoyT +2K4 T + K4 T

Furthermore, the following identities also hold in the second class with

the second category:

32)r (30)r 2l)r
(4.14a) Ko T +K, T =—-K4 T
33r (31)r 2 22r (20)r 5007
(4.14b) KoT +2K4 T = ((KQ) — K4) T +2K Ky T + (K4) T
(31)r  33r 11r (20)r 00r

(4.14c) 2Ko T + T =—((K2)? —Ky) T +2K4 T + KoK, T

(For the second class with the first category).

11r 00r
(4.15) T =K, T

Proof. We first note that the terms in the right-hand side of (3.5a)
vanishes identically when # = y. Therefore, whenever we use (3.5a), it
suffices to consider the terms corresponding to the cases x # y only. The
proof of the above relations follow from (3.5a), using (4.6) for the proof
of (4.11), (4.7) for the proof of (4.12), (4.8) for the proof of (4.13), (4.9)
for the proof of (4.14) and (4.10) for the proof of (4.15), respectively.

For example, the relation (4.11a) may be proved as in the following way:
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(50)r (50)r
T = T ow
x Yy z
= ) T MCMOMTALALA,
Ty.2 T Yy 4
= Y Top[-MUMY — MM — K, MG MO
o x y z y fes Yy

z

z Yy
~KoMPMY — KM M9)A,A,A,
T Yy x Yy

(4)r (32)r (30)r 2h)r (10)r
= _Tw;w_ Twpu'"K2Twpu_K2Twuu_K4Tw;u/
(4)r  (32)r (30)r 21)r (10)r

= —-T - T -KyT -Ko T -K4 T
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