DOI QR코드

DOI QR Code

Molecular Characterization of a thiJ-like Gene in Chinese Cabbage

  • Oh, Kyung-Jin (Division of Life Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Park, Yong-Soon (Division of Life Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Lee, Kyung-Ah (Division of Life Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Chung, Yong-Je (Division of Life Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Cho, Tae-Ju (Division of Life Sciences, College of Natural Sciences, Chungbuk National University)
  • Published : 2004.05.31

Abstract

A cDNA clone for a salicylic acid-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene encoding a protein of 392 amino acids contained a tandem array of two thiJ-like sequences. ThiJ is a thiamin biosynthesis enzyme that catalyzes the phosphorylation of hydroxymethylpyrimidine (HMP) to HMP monophosphate. Although the cabbage gene shows a similarity to bacterial thiJ genes, it also shares a similarity with the human DJ-1, a multifunctional protein that is involved in transcription regulation, male fertility, and parkinsonism. The cabbage thiJ-like gene is strongly induced by salicylic acid and a nonhost pathogen, Pseudomonas syringae pv. tomato, which elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with BTH, methyl jasmonate, or ethephon showed that the cabbage thiJ-like gene expression is also strongly induced by BTH, but not by methyl jasmonate or ethylene. This indicates that the cabbage gene is activated via a salicylic acid-dependent signaling pathway. Examination of the tissue-specific expression revealed that the induction of the cabbage gene expression by BTH occurs in the leaf, stem, and floral tissues but not in the root.

Keywords

References

  1. Bashan, Y., Sharon, E., Okon, Y. and Henis, Y. (1981) Scanning electron and light microscopy of infection and symptom development in tomato leaves infected with Pseudomonas tomato. Physiol. Plant Pathol. 19, 139-144. https://doi.org/10.1016/S0048-4059(81)80016-1
  2. Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P. and Delledonne, M. (2003) AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270, 2593-2604. https://doi.org/10.1046/j.1432-1033.2003.03630.x
  3. Bent, A. F. (1996) Plant disease resistance genes: Function meets structure. Plant Cell 8, 1757-1771. https://doi.org/10.1105/tpc.8.10.1757
  4. Bonifati, V., Rizzu, P., Van Baren, M. J., Schaap, O., Breedveld, G. J., Krieger, E., Dekker, M. C., Squitieri, F., Ibanez, P., Joose, M., van Dongen, J. W., Vanacore, N., Van Swieten, J. C., Brice, A., Meco, G., van Duijn, C. M., Oostra, B. A. and Heutink, P. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256-259. https://doi.org/10.1126/science.1077209
  5. Dangl, J. L. and Jones, J. D. G. (2001) Plant pathogens and integrated defence responses to infection. Nature 411, 826-833. https://doi.org/10.1038/35081161
  6. Dardenne, L. E., Werneck, A. S., De Oliviera Neto, M. and Bisch, P. M. (2003) Electrostatic properties in the catalytic site of papain: A possible regulatory mechanism for the reactivity of the ion pair. Proteins 52, 236-253. https://doi.org/10.1002/prot.10368
  7. De Vries, S., Hoge, H. and Bisseling, T. (1988) Isolation of total and polysomal RNA from plant tissues; in Plant Molecular Biology, S.B. Gelvin and R.A. Schilperoot (eds), pp. B6/1-5, Kluwer Academic Publishers, Dordrecht, The Netherlands.
  8. Delaney, T. P. (1997) Genetic dissection of acquired resistance to disease. Plant Physiol. 113, 5-12. https://doi.org/10.1104/pp.113.1.5
  9. Du, X., Choi, I.-G., Kim, R., Wang, W., Jancarik, J., Yokota, H. and Kim, S.-H. (2000) Crystal structure of an intracellular protease from Pyrococcus horikoshii at 2-A resolution. Proc. Natl. Acad. Sci. USA 97, 14079-14084. https://doi.org/10.1073/pnas.260503597
  10. Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005-1016. https://doi.org/10.1006/jmbi.2000.3903
  11. Feys, B. and Parker, J. E. (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet. 16, 449-455. https://doi.org/10.1016/S0168-9525(00)02107-7
  12. Goerlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K.-H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H. and Ryals, J. (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8, 629-643. https://doi.org/10.1105/tpc.8.4.629
  13. Halio, S. B., Blumentals, I. I., Short, S. A., Merrill, B. M. and Kelly, R. M. (1996) Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 178, 2605-2612.
  14. Hammond-Kosak, K. E. and Jones, J. D. G. (1996) Resistance gene-dependent plant defense responses. Plant Cell 8, 1773-1791. https://doi.org/10.1105/tpc.8.10.1773
  15. Hanfrey, C., Fife, M. and Buchanan-Wollaston, V. (1996) Leaf senescence in Brassica napus: Expression of genes encoding pathogenesis-related proteins. Plant Mol. Biol. 30, 597-609. https://doi.org/10.1007/BF00049334
  16. Hansen, C. H., Du, L., Naur, P., Olsen, C. E., Axelsen, K. B., Hick, A. J., Pickett, J. A. and Halkier, B. A. (2001) CYP83B1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J. Biol. Chem. 276, 24790-24796. https://doi.org/10.1074/jbc.M102637200
  17. Honbou, K., Suzuki, N. N., Horiuchi, M., Niki, T., Taira, T., Ariga, H. and Inagaki, F. (2003) The crystal structure of DJ-1, a protein related to male fertility and Parkinson's disease. J. Biol. Chem. 278, 31380-31384. https://doi.org/10.1074/jbc.M305878200
  18. Kim, M., Lim, C.-J. and Kim, D. (2002) Transcription of Schizosaccharomyces pombe thioltransferase-1 in response to stress conditions. J. Biochem. Mol. Biol. 35, 409-413. https://doi.org/10.5483/BMBRep.2002.35.4.409
  19. Kim, Y. S., Nosaka, K., Downs, D. M., Kwak, J. M., Park, D., Chung, I. K. and Nam, H. K. (1998) A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine kinase/ thiamin-phosphate pyrophosphorylase involved in thiamin biosynthesis. Plant Mol. Biol. 37, 955-966. https://doi.org/10.1023/A:1006030617502
  20. Krueger, J., Thomas, C. M., Golstein, C., Dixon, M. S., Smoker, M., Tang, S., Mulder, L. and Jones, J. D. G. (2002) A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744-747. https://doi.org/10.1126/science.1069288
  21. McDowell, J. M. and Dangl, J. L. (2000) Signal transduction in the plant immune response. Trends Biochem. Sci. 25, 79-82. https://doi.org/10.1016/S0968-0004(99)01532-7
  22. Min, H.-J., Park, S.-S. and Cho, T.-J. (2001) A simple and efficient subtractive cloning method. J. Biochem. Mol. Biol. 34, 59-65.
  23. Mizote, T., Tsuda, M., Smith, D. D. S., Nakayama, H. and Nakazawa, T. (1999) Cloning and characterization of the thiD/J gene of Escherichia coli encoding a thamin-synthesizing bifunctional enzyme, hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase. Microbiology 145, 495-501. https://doi.org/10.1099/13500872-145-2-495
  24. Nagakubo, D., Taira, T., Kitaura, H., Ikeda, M., Tamai, K., Iguchi-Ariga, S. M. M. and Ariga, H. (1997) DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231, 509-513. https://doi.org/10.1006/bbrc.1997.6132
  25. Nuernberger, T. and Scheel, D. (2001) Signal transmission in the plant immune response. Trends Plant Sci. 6, 372-379. https://doi.org/10.1016/S1360-1385(01)02019-2
  26. Park, Y.-S., Min, H.-J., Ryang, S.-H., Oh, K.-J., Cha, J.-S., Kim, H.Y. and Cho, T.-J. (2003) Characterization of salicylic acidinduced genes in Chinese cabbage. Plant Cell Rep. 21, 1027-1034. https://doi.org/10.1007/s00299-003-0606-9
  27. Pieterse, C. M. J. and van Loon, L. C. (1999) Salicylic acidindependent plant defence pathways. Trends Plant Sci. 4, 52-58. https://doi.org/10.1016/S1360-1385(98)01364-8
  28. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. (1996) Systemic acquired resistance. Plant Cell 8, 1809-1819. https://doi.org/10.1105/tpc.8.10.1809
  29. Ryang, S.-H., Chung, S.-Y., Lee, S.-H., Cha, J.-S., Kim, H. Y. and Cho, T.-J. (2002) Isolation of pathogen-induced Chinese cabbage genes by subtractive hybridization employing selective adaptor ligation. Biochem. Biophys. Res. Commun. 299, 352-359. https://doi.org/10.1016/S0006-291X(02)02639-6
  30. Takahashi, K., Taira, T., Niki, T., Seino, C., Iguchi-Ariga, S. M. and Ariga, H. (2001) DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor. J. Biol. Chem. 276, 37556-37563. https://doi.org/10.1074/jbc.M101730200
  31. Takasaki, T., Hatakeyama, K., Suzuki, G., Watanabe, M., Isogai, A. and Hinata, K. (2000) The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403, 913-916. https://doi.org/10.1038/35002628
  32. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  33. Wagenfeld, A., Gromoll, J. and Cooper, T. G. (1998) Molecular cloning and expression of rat contraception associated protein 1 (CAP1), a protein putatively involved in fertilization. Biochem. Biophys. Res. Commun. 251, 545-549. https://doi.org/10.1006/bbrc.1998.9512
  34. Whalen, M. C., Innes, R. W., Bent, A. F. and Staskawicz, B. J. (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3, 49-59. https://doi.org/10.1105/tpc.3.1.49

Cited by

  1. Use of cysteine-reactive cross-linkers to probe conformational flexibility of human DJ-1 demonstrates that Glu18 mutations are dimers vol.130, pp.6, 2014, https://doi.org/10.1111/jnc.12763
  2. Proteomic changes in grape embryogenic callus in response to Agrobacterium tumefaciens-mediated transformation vol.181, pp.4, 2011, https://doi.org/10.1016/j.plantsci.2011.07.016
  3. Acibenzolar-S-methyl induces resistance in oilseed rape (Brassica napus L.) against branched broomrape (Orobanche ramosa L.) vol.28, pp.1, 2009, https://doi.org/10.1016/j.cropro.2008.08.014
  4. Activation of Defense Responses in Chinese Cabbage by a Nonhost Pathogen, Pseudomonas syringae pv. tomato vol.38, pp.6, 2005, https://doi.org/10.5483/BMBRep.2005.38.6.748
  5. Identification of plant defence genes in canola usingArabidopsiscDNA microarrays vol.10, pp.5, 2008, https://doi.org/10.1111/j.1438-8677.2008.00056.x
  6. Melon phloem-sap proteome: developmental control and response to viral infection vol.248, pp.1, 2011, https://doi.org/10.1007/s00709-010-0215-8
  7. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response vol.12, pp.1, 2012, https://doi.org/10.1186/1471-2229-12-2
  8. Thiamine and Parkinson's disease vol.316, pp.1-2, 2012, https://doi.org/10.1016/j.jns.2012.02.008