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1. Introduction

The concept of delivery windows (due date tolerances) 
has stemmed from the fact that some customers 
impose service deadlines and earliest service time 
constraints(Ventura and Weng, 1996). Delivery win- 
dows arises in a variety of applications, including 
retail distribution, mail and newspaper delivery, 
municipal waste collection, fuel oil delivery, school 
bus routing, airline and railroad scheduling, trucking 
and bargeline fleet scheduling, and demand responsive 
bus systems (Solomon and Desrosiers, 1988). In 
machine scheduling problems concerning delivery 
windows, a job will incur no penalty if it completes 
within its delivery window (Weng and Ventura, 1995). 
Earliness (tardiness) is measured only from the left 
(right) side of the delivery window. Figure 1 shows a 
continuous penalty function, where for job j, j = 1, ..., 
n, dj is the due date, αj the earliness penalty, βj the 
tardiness penalty, vj left (right) delivery window side, 
e1j earliness with penalties, t1j tardiness with penalties, 

e2j earliness without penalties, and t2j tardiness without 
penalties.

Lot-streaming is the process of splitting a job (lot) 
into a number of smaller sublots so that successive 
operations can be overlapped in a multi-stage 
production system (Baker and Pike, 1990). The idea of 
lot-streaming scheduling has been introduced by 
Reiter (1966) and is consistent with the optimal 
production technology (OPT) concept (Glass et al., 
1996). The use of sublots usually results in substantially 
shorter job completion times for the corresponding 
schedule. This process is illustrated by the two-job, 
three-machine, equal-size sublot lot-streaming flow 
shop with infinite capacity buffers shown in <Figure 
2>, where jobs 1 and 2 are divided into three and two 
sublots, respectively. The processing times of jobs 1 
and 2 are 3 and 2 time units on machine 1 (M1), 3 and 
6 time units on machine 2 (M2), and 6 and 4 time units 
on machine 3 (M3), respectively. The due dates of 
jobs 1 and 2 are in 9 and 11 time units. A job that 
completes within 1 time unit from its due date does not 
incur penalty. If the jobs are not split into sublots, the 
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completion times of jobs 1 and 2 will be 12 and 16 
time units, and both jobs will have a delay of 2 and 4 
time units from the delivery window, respectively 
(schedule 1). As <Figure 2(b)> shows, when the jobs 
are split into sublots, the completion times of jobs are 
reduced to 8 and 12 time units, respectively, and both 
jobs can complete within its delivery window 
(schedule 2).

The problem addressed in this paper is the minimi- 
zation of the mean weighted absolute deviation of job 
completion times from due dates with tolerances for 

the n-job, m-machine, equal-size sublot, lot-streaming 
flow shop problem with delivery windows. Since this 
problem is NP-complete (Hall and Posner, 1991; 
Garey and Johnson, 1979), it requires significant 
computational effort to obtain solutions with large n. 
Consequently, it is of great interest to find good 
approximation algorithms for the problem. For a given 
job sequence, the insertion of idle times between 
sublots and between jobs may improve the objective 
function in some cases. In Section 2, a linear 
programming (LP) formulation is presented for the 

Figure 1. A continuous penalty function for due date tolerances.
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Figure 2. Two schedules for a three-machine flow shop (the numerical represent jobs).
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equal-size sublot flow shop problem with delivery 
windows to find the optimal completion times of 
sublots for a given job sequence (individual). The 
objective function values of the LP are transformed to 
obtain fitness values of individuals. With these fitness 
values, NGA searches for the best sequences. In 
Section 3, the functions of the NGA are defined and 
explained in detail. In Section 4, the procedure to 
generate sample problems and the results of the 
computational experiments are provided. The 
performance of the NGA approach is compared with 
that of the API method. Finally, summary of main 
results and conclusions are provided in Section 5.

2. Lot-Streaming Flow Shop 
    Problem with Delivery Windows

For job j, j = 1, ..., n, let sj be the number of sublots, 
p1,j the processing time on machine i, and ri,j the sublot 
processing time on machine i. If the completion time 
of the sublot k of job j on machine i is ci,j,k, then e1j = 
max{0, dj - vj - cm,j,sj}, t1j = max{0, cm,j,sj - (dj + vj)}, e2j 
= min[max{0, dj - cm,j,sj}, vj], and t2j = min[max{0, 
cm,j,sj - dj}, vj]. Let σ = {σ(1), σ(2), ..., σ(n)} represent a 
sequence of jobs defined by a permutation of integers 
{1,…, n}, where σ(j) represents the jth job in the 
sequence and the number of all feasible sequences is 
n!. Let ci,σ(j),k represent the completion time of sublot k 
of the jth job on machine i in a given job sequence σ. 
For a given job sequence σ, the problem can be 
formulated as follows:

          m inimize            z (σ ) = Σ
j = 1

n

[αje 1j+ jt1 j ] (1)

s.t.         ci,σ (j ), 1 − ri ,σ(j )≥ ci,σ (j − 1 ), sσ(j− 1 )
,

           for      i =  1,  ...,  m,   j  =  2,  ...,  n (2)

     ci, j , k − ri, j≥ ci, j, k− 1,

        for     i =  1,  ...,  m,   j  =  1,  ...,  n,  k =  2,  ...,  sj   (3)

    ci,j,k − ri, j≥ ci− 1, j,k,
       for  i =  2,  ...,  m,   j  =  1,  ...,  n,  k =  1,  ...,  sj  (4)

    cm,j,s j
− t1j − t2j + e1j + e2j = dj,

         for j  =  1,  ...,  n          (5)

       c1,σ (1 ),1≥ r1, σ (1) (6)

      0 ≤ e 2j≤ v j,   
         for j  =  1,  ...,  n       (7)

    

     0≤ t2 j≤ vj,                        for j  =  1,  ...,  n   (8)

  ci,j,k≥ 0,       (9)
      for i =  1,  ...,  m,   j  =  1,  ...,  n,  k =  1,  ...,  sj

  e1j, t1j≥0,                                    for j  =  1,  ...,n .                (10)

Constraint set (2) establishes the relationships 
between completion times of any two jobs on each 
machine. That is, only one job at most can be 
processed on each machine at the same time. 
Constraint set (3) states that each machine can process 
at most one sublot at the same time. Constraint set (4) 
insures that each sublot on the current machine cannot 
transfer to the next machine before its processing is 
finished. Constraint set (5) states that the completion 
time of a job at the last machine is equal to its due date 
minus or plus the amount of time it is early or tardy. 
Constraint set (6) states that jobs are available at time 
zero. The inequalities (7) and (8) insure the lower and 
upper bound of the earliness and tardiness variables 
inside due date tolerances. The inequalities (9) and 
(10) insure nonnegativity of variables.

3.  New Genetic Algorithm (NGA)

Genetic algorithms(GAs) have been successfully 
applied to various problems that could not have been 
readily solved with conventional computational tech- 
niques(Liepins and Hilliard, 1989). Although there are 
many possible variants of the basic GAs, the funda- 
mental underlying mechanism operates on a population 
of individuals and consists of three operations 
(selection, crossover and mutation) to construct new 
solutions from individuals of the current population. 
Individuals are chosen on the basis of their fitness 
values according to the GA philosophy of survival- 
of-the-fitness. Based on this selection strategy, some 
individuals may be selected more than once, while 
other individuals may never be selected. Thus, the 
performance of GAs is highly sensitive to the selection 
process. GAs sometimes end in premature convergence 
using the proportionate selection scheme (Srinivas and 
Patnaik, 1994).

NGA replaces the selection and mating operators of 
GAs by new operators (marriage and pregnancy 
operators). Every individual is mated only once with 
another in a population and this mating process is 
called marriage. An individual's fitness value is 
calculated using fitness function by rank (Reeves, 
1995). The sum of two mated individuals’ fitness 
values becomes the couple’s fitness value. A couple 



162 Suk-Hun Yoon

may be selected to produce an offspring according to 
the couple’s fitness value (called pregnancy rate). 
Some couples may produce two or more offspring, 
while others may not. If a couple has produced one 
offspring, its fitness value decreases by some 
proportion of its fitness value (i.e., the pregnancy rate 
decreases), which can be interpreted as aging effect.

NGA adopts the idea of inter-chromosomal domi- 
nance and incorporate this idea into partially matched 
crossover (PMX). Yoon and Ventura (2002) explains 
the procedure of PMX in detail. Since a couple 
produces only one offspring by this PMX with 
inter-chromosomal dominance, the choice of an 
individual in a couple is important. PMX with 
inter-chromosomal dominance has two stages: (1) 
crossover between two individuals using PMX to 
generate two offspring, (2) selection of an offspring, 
which has more genes from the higher fit individual 
than the other (inter-chromosomal dominance). In this 
way, more genes from the high fit individual will be 
inherited to the offspring. The procedure of PMX with 
inter-chromosomal dominance is illustrated by two 
individuals A and B in the couple chosen for crossover 
such that A = (10 6 5 1 9 7 8 2 3 4) with fitness value 
of 76 and B = (3 7 6 10 5 8 1 4 9 2) with fitness value 
of 53 in <Figure 3>. Suppose that two crossover points 
are 3 and 7. PMX produces two offspring A' = (7 6 9 
10 5 8 1 2 3 4) and B' = (3 10 6 1 9 7 8 4 5 2) as 
shown in <Figure 3(b)>. PMX with inter-chromoso- 
mal dominance produces an offspring A' = (7 6 9 10 5 
8 1 2 3 4) since A' has more genes from high fit 
individual A as shown in <Figure 3(c)>.

Once an offspring is produced by PMX with inter- 
chromosomal dominance, the offspring may be mutat- 
ed with certain mutation rate. NGA adopts the 
adjacent swap method with a constant mutation rate in 
which a job is exchanged with the next job in the job 

sequence. If the last job is to be mutated, it is 
exchanged with the first job in the job sequence.

New Genetic Algorithm (NGA)

Step 1 (Initialization)
Generate an initial population with w individuals 
using a random number generator.

Step 2 (Calculation of Individual’s Fitness)
(a) Obtain objective values of individuals in the 

population by using LP.
(b) Compute the fitness values of individuals in the 

population using the formula

     p ([k ]) =
2k

w (w + 1 )
,                     for    k =  1,  ...,  w,

     where [k] is the kth individual in descending         
      order of the objective function value.

Step 3 (Marriage and Pregnancy)
(a) Mate every individual with another individual 

randomly and sum the fitness values of the 
couple.

(b) Use the roulette wheel selection(Goldberg, 1989) 
to choose a couple for crossover and mutation 
processes.

Step 4 (Reproduction)
(a) Apply PMXt crossover rate to the couple chosen 

at Step 3.
(b) Apply the adjacent swap method with a constant 

mutation rate to the offspring in which a job is 
exchanged with the next job in the job sequence. 
If the last job is to be mutated, it is exchanged 
with the first job in the job sequence.

crossover point 
1

crossover point 
2

individual A: 10 6 5 1 9 7 8 2 3 4
individual B: 3 7 6 10 5 8 1 4 9 2

(a) Two individuals before crossover

individual A': 7 6 9 10 5 8 1 2 3 4
individual B': 3 10 6 1 9 7 8 4 5 2

(b) Two individuals after PMX operation

individual A': 7 6 9 10 5 8 1 2 3 4

(c) One individual after PMX with inter-chromosomal dominance operation

Figure 3.  Comparison between PMX and PMX with inter-chromosomal dominance.
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(c) If the number of offspring reaches w, go to Step 
5. Otherwise, go to Step 3.

Step 5 (Termination test)
If NGA reaches the maximum number of genera- 
tions, stop. Otherwise, go to Step 2.

4.  Computational Study

The LP formulation, NGA, and API method were 
coded in Visual FORTRAN with the IMSL library and 
ran on a Pentium IV 1.8 GHz PC. Since no sample 
problems were found in the literature, the test 
problems were generated randomly for the delivery 
window length 6, 12, and 24 (Hall and Posner, 2001). 

The size of each problem is represented by the number 
of jobs (NJ) and the number of machines (NM). The 
number of sublots and the earliness and tardiness 
penalties of jobs are uniformly distributed in [1, 6]. 
Sublot processing times and due dates of jobs are 
uniformly distributed in [1, 31] and [15 * NJ, 15 * (NJ 
+ NM))], respectively. 

The experiments were divided into two parts: 
preliminary test and main test. A preliminary test was 
performed to achieve the best control parameter sets 
that influence the performance of NGA. In preliminary 
test, 12 test problems of different sizes generated 
according to the above data were solved and the best 
average objective value was obtained by using a 
population size (PPSZ) of 100, a total of 100 
generations, the fitness function by rank, a loss of 
pregnancy rate of 1/PPSZ, and a mutation rate of 0.01. 

Table 1.  Results for medium and large size, equal-size sublot, delivery window problems 

(a) Window length of six

Window No. of No. of API method NGA method %Dev
length Jobs machines Avg. objective (zh) Avg. objective (zn) (zh-zn/zh)×100

10 2 5891.67 3987.00 32.33
3 4763.00 3717.33 21.95
4 4678.33 4136.33 11.59
5 4386.33 4024.33 8.25

6
15 2 6833.33 6030.33 11.75

3 7882.33 5755.33 26.98
4 9460.33 6925.67 26.79
5 9510.00 6375.33 32.96

Average 6675.67 5118.96 23.32

(b) Window length of twelve

Window No. of No. of API method NGA method %Dev
length Jobs machines Avg. objective (zh) Avg. objective (zn) (zh-zn/zh)×100

10 2 4128.00 3910.00 5.28
3 4691.67 3646.00 22.29
4 4475.67 4062.00 9.24
5 4311.33 3954.33 8.28

12
15 2 6713.00 5873.33 12.51

3 7748.33 5555.33 28.30
4 9345.00 6796.00 27.28
5 9380.00 6274.33 33.11

Average 6349.13 5008.92 21.11
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These control parameters are used in the main test.
The test problems for the main test were generated 

in a similar way. Three different test problems were 
generated for each problem size. These 36 problems 
were solved by NGA for the delivery window length 
6, 12, and 24. For small size lot-streaming flow shop 
problems (7 jobs and 2-5 machines), the results of the 
NGA were compared with the optimal solutions 
obtained by exhaustive search. NGA achieved optimal 
solutions for all twelve small size problems.

NGA was also applied to medium size (10 jobs and 
2-5 machines) and large size (15 jobs and 2-5 
machines) problems. To evaluate the performance of 
NGA, the average objective function value of NGA is 
compared with that of API method, which is known to 
be a good heuristic for the single machine scheduling 
problem with the mean tardiness performance measure 
(Baker, 1974; Wagner and Ragatz, 1994). The results 
of NGA and API for medium and large size problems 
are shown in <Table 1>. The average objective 
function values reported in <Table 1> are the average 
values of three instances for each problem size. Based 
on these results, NGA provides 23.32%, 21.11%, and 
21.36% better solutions than API method on the 
average for delivery window length 6, 12, and 24, 
respectively.

5.  Conclusions

This paper has addressed the n-job, m-machine, equal- 
size sublot, lot-streaming flow shop problem with 
delivery windows, in which the objective is to 
minimize the mean weighted absolute deviation from 
the due dates with tolerances. Meta-heuristic algori- 
thms such as GAs have been used for many scheduling 
problems. However, GAs have sometimes experienced 
premature convergence(Beasley et al., 1993). NGA 
has been proposed to overcome the premature conver- 
gence by substituting marriage and pregnancy opera- 
tors for GAs’ selection and mating operators. The 
performance of NGA was compared with that of the 
API method and the results of the computational 
experiments show that NGA works well for this type 
of problem.
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