Optimum Design of Plane Steel Frame Structures Using Refined Plastic Hinge Analysis and SUMT

개선소성힌지해석과 SUMT를 이용한 평면 강골조의 연속최적설계

  • 윤영묵 (경북대학교 토목공학과) ;
  • 강문명 (경북대학교 건축공학과) ;
  • 이말숙 (경북대학교 대학원 건축공학부)
  • Received : 2003.11.12
  • Accepted : 2004.12.18
  • Published : 2004.02.27

Abstract

In this study, a continuous optimum design model with its application program for plane steel frame structures developed. In the model, the sequential unconstrained minimization technique (SUMT) transforming the nonlinear optimization problem with multidesign variables and constraints into an unconstrained minimization problem and the refined plastic hinge analysis method as one of the most effective second-order inelastic analysis methods for steel frame structures were implemented. The total weight of a steel frame structure was taken as the objective function, and the AISC-LRFD code requirements for the local and member buckling, flexural strength, shear strength, axial strength and size of the cross-sectional shapes of members were used for the derivation of constraint equations. To verify the appropriateness of the present model, the optimum designs of serveral plane steel frame structures subject to vertical and horizontal loads were conducted.

본 연구에서는 다제약 설계변수를 갖는 비선형 문제를 무제약 최소화 문제로 전환하는 축차무제약 최소화기법(SUMT)과 효과적인 강골조의 2차비탄성해석 방법 중의 하나인 개선소성힌지해석 방법을 접목시킨 평면 강골조의 연속최적설계 모델 및 프로그램을 개발하였다. 최적설계를 위한 목적함수로는 강골조물을 구성하는 모든 부재의 중량 합을, 제약조건으로는 AISC-LRFD의 휨강도, 전단강도, 압축 및 인장강도, 국부좌굴 및 부재좌굴, 그리고 단면형상 등에 관한 설계기준을 사용하였다. 본 연구에서 개발한 연속최적설계 모델을 이용하여 여러 평면 강골조의 최적설계를 수행하였으며, 최적설계 견과로부터 개발한 연속최적설계 모델의 사용성, 타당성, 효율성 및 경제성 등을 검토하였다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. 2차원 강뼈대-전단벽 구조물의 최적설계 김준우
  2. 2차 탄성 해석법에 의한 강뼈대 구조물의 최적설계 김현진
  3. Load and Resistance Factor Design Specifications for Structural Steel Buildings AISC LRFD
  4. Journal of the Institute of Structural Engineers v.59 Simplified Second-Order Inelastic Analysis for Steel Frames Al-Mashary, F.;Chen, W.F.
  5. Journal of Structural Engineering, ASCE v.120 no.8 Spread of Plasticity: Quasi-Plastic-Hinge Ppproach Attala, M.N.;Deierlein, G.G.;McGuire, W.
  6. LRFD Steel Design using Advanced Analysis Chen, W.F.;Kim
  7. Structural Stability-theory and implementation Chen, W.F.;Lui, E.M.
  8. Plastic Design and Second-Order Analysis of Steel Frames Chen, W.F.;Sohal, I.S.
  9. Plastic Zone Analysis of Frames, Advanced Analysis of Steel Frames: Theory, Software, and Applications Clarke, M.J.;Chen, W.S.(ed.);Toma, S.(ed.)
  10. Annual Technical Session Preceedings A Discrete Model for Gradual Plastification and Nonlinear Connection Response in Threedimensional Framed Structures Deirelein, G.G.;Zhao, Y.;McHGuire, W.
  11. Inelastic Behavior of Multistory Steel Frames, Structural Engineering Report No.83 El-Zanaty, M.;Murray, D.;Bjorhovde, R.
  12. Guide to Stability Design Criteria for Metal Structures Galambos, T.V.(ed.)
  13. J. of Structural Engineering v.113 no.7 Second-Order Elastic Analysis for Frame Design Goto, Y.;Chen, W.F.
  14. Practical Advanced Analysis for Steel Frame design Kim, S.E.
  15. Journal of Structural Engineering v.120 Practical Second-Order Inelastic Analysis of Semi-Rigid Frames King, W.S.;Chen, W.F.
  16. Journal of Structural Engineering v.119 no.11 Second-Order Refined Plastic Hinge Analysis for Frame Design: Part I Liew, J.Y.R.;White, D.W.;Chen, W.F.
  17. Journal of Structural Engineering v.119 no.11 Second-Order Refined Plastic Hinge Analysis for Frame Design: Part II Liew, J.Y.R.;White, D.W.;Chen, W.F.
  18. Nonlinear Static Analysis of Three-dimensional Steel Frames, Report No.82-6, Department of Structural Engineering Orbison, J.G.
  19. Stahlbau v.10 Calibrating Frames Vogel, U.
  20. Material and Geometric Nonlinear Analysis of Local Planar Behavior in Steel Frames using Iterative Computer Graphics White, D.W.