Framed Steel Plate Wall subject to Cyclic Lateral Load

주기하중을 받는 골조강판벽의 실험연구

  • 박홍근 (서울대학교 건축학과) ;
  • 곽재혁 (서울대학교 건축학과) ;
  • 전상우 (포항산업과학연구원 강구조연구소) ;
  • 김원기 (호서대학교 건축공학과)
  • Received : 2004.08.14
  • Accepted : 2004.11.18
  • Published : 2004.12.27

Abstract

Experiments were performed to study the cyclic behavior of framed steel walls with thin web plates. Five specimens of single-bay and three-story steel plate walls were tested for cyclic lateral load. The parameters for the test specimens included the plate thickness and the column strength. Based on the test results, the strength, deformability, and energy dissipation capacity of the framed steel walls were studied. The test results showed that the behavioral characteristics of the framed steel walls with thin web plates were different in many aspects from those of the conventional braced frame, and the steel wall with a stiffened web plate exhibited cantilever action, high strength, and low ductility. With the framed steel plate walls, local plate buckling and tension-field action developed in the thin web plates, and plastic deformation was uniformly distributed along the wall's height. As a result, the framed steel plate walls exhibited combined flexural and shear deformation, but they also showed high strength and energy dissipation capacity. Moreover, such walls have high deformability, which was equivalent to that of the conventional moment frame. Frame members such as columns and beams, however, must be designed to resist the tension-field action of the thin web plates. If the column does not have sufficient strength, and if its sections are not compact enough, the overall strength of the framed steel wall might be significantly decreased by the development of the soft-story mechanism. The framed steel walls with thin web plates have advantages, such as high deformability and high strength. Therefore, they can be used as ductile elements in earthquake-resistant systems.

스티프너가 없는 얇은 강판을 사용한 골조강판벽 시스템에 대한 실험연구를 실시하였다. 1경간 3층의 골조강판벽에 주기횡하중을 재하하였으며, 주요한 실험 변수는 강판의 두께, 기둥의 강도이다. 실험결과를 이용하여 강판벽의 강도, 변형능력, 에너지 소산능력을 연구하였으며, 이를 토대로 골조강판벽의 파괴메카니즘을 분석하였다. 실험결과, 얇은 강판을 사용하는 골조강판벽은, 높은 강도, 낮은 연성능력, 캔틸레버거동특성을 나타내는 일반적인 가새골조나 스티프너 보강된 강판벽과는 여러 면에서 다른 거동특성을 나타낸다. 골조강판벽에서는 강판의 조기국부좌굴과 인장응력장 작용이 발생하면서, 전 층에 고르게 항복변형이 분포된다. 이로 인하여 변형형태는 휨변형과 전단변형의 복합형태를 나타내며, 우수한 강도 및 에너지 소산능력과 연성모멘트 골조에 버금가는 변형능력을 나타내었다. 그러나 일반적인 가새골조와는 달리 보, 기둥 등의 골조부재는 강판의 인장응력장을 지지할 수 있도록 설계되어야 하며, 따라서 기둥의 강도가 작고 콤팩트 단면을 사용하지 않은 경우에는 약층현상이 발생하며 강도가 급격히 저하되었다. 얇은 강판을 사용하는 골조강판벽은 일반적인 가새골조나 스티프너 보강 강판벽과는 차별되는 우수한 변형능력을 갖고 있으므로 연성내진구조시스템으로 활용할 수 있다.

Keywords

Acknowledgement

Supported by : 포항산업과학연구원(RIST), 한국건설교통기술평가원

References

  1. 강구조 한계상태 설계기준 및 해설 대한건축학회
  2. Load and Resistance Factor Design Specification AISC
  3. Seismic Provisions for Structural Steel Buildings AISC
  4. Transactions of Japan Concrete Institute v.6 Aseismic strengthening of existing RC buildings by steel panel shear walls with rims Aoyama, H.;Yamamoto, Y.
  5. Seismic Behavior and Design of Steel Shear Walls, Steel TIPS Report Astaneh-Asl, A.
  6. Guidelines for cyclic seismic testing of components of steel structures, Rep. No.24 ATC
  7. J. Struct. Engrg. ASCE v.129 no.11 Plastic Analysis and Design of Steel Plate Shear Walls Berman, J.;Bruneau, M.
  8. J. Struct. Div., ASCE v.119 no.2 Experimental study of thin steel-plate shear walls under cyclic load Caccese, V.;Elgaaly, M.;Chen, R.
  9. A Cyclic Structural Testing System for Thin Steel Plate Shear Walls Chen, R.
  10. CAN/CSA-S16, Limit states design of steel structures CSA
  11. Seismic behaviour of steel plate shear walls, Struct. Engrg. Rep. No. 215 Driver, R.G.;Kulak, G.L.;Kennedy, D.J.L.;Elwi, A.E.
  12. J. Struct. Engrg., ASCE v.124 no.2 Cyclic test of a four-storey steel plate shear wall Driver, R.G.;Kulak, G.L.;Kennedy, D.J.L.;Elwi, A.E.
  13. J. Struct. Engrg., ASCE v.124 no.2 FE and Simplified Models of Steel Plate Shear Wall Driver, R.G.;Kulak, G.L.;Elwi, A.E.;Kennedy, D.J.L.
  14. North American Steel Construction Conference Recent Developments and Future Directions in Steel Plate Shear Wall Research Driver, R.G.;Grondin, G.Y.;Behbahanifard, M.R.;Hussain, M.A.
  15. Thin-Walled Structures v.32 Thin steel plae shear walls behavior and analysis Elgaaly, M.
  16. J. Struct. Div., ASCE v.119 no.2 Experimental study of thin steel-plate shear walls under cyclic load Elgaaly, M.;Caccese, V.
  17. J. Struct. Engrg.,ASCE v.123 no.11 Analysis of Thin-Steel-Plate Shear Walls Elgaaly, M.;Liu, Y.
  18. J. Struct. Engrg. ASCE v.126 no.4 Unstiffened steel plate shear wall performance under cyclic loading Lubell, A.S.;Prion, H.G.L.;Ventura, C.E.;Rezai, M.
  19. AISC Engineering Journal v.38 no.1 Steel plate shear walls-and overview Kulak, G.L.;Kennedy, D.J.L.;Driver, R.G.;Medhekar, M.
  20. Seismic behaviour of steel plate shear walls by shake table testing Rezai, M.
  21. Engineering Structures v.17 no.5 Seismic resistance of steel plate shear walls Robert, T.M.
  22. Struct. Design Tall Build. Experimental and Analytical Studies of Steel Plate Shear Walls as Applied to the Design of Tall Buildings Timler, P.;Ventura, C.E.;Prion, H.;Anjam, R.
  23. Analysis of steel plate shear walls, Struct. Engrg. Rep. No. 107 Thorburn, L.J.;Kulak, G.L.;Montgomery, C.J.
  24. Cyclic and static behaviour of thin panel steel polate shear walls, Struct. Engrg. Rep. No. 145 Tromposch, E.W.;Kulak, G.L.
  25. Proc., Structural Stability Research Council Annual Technical Session Interaction of infilled steel shear wall panels with surrounding frame members Xue, M.;Lu, L.W.