DOI QR코드

DOI QR Code

Mechanisms of Type-I Interferon Signal Transduction

  • Uddin, Shahab (King Fahad National Center for Children's Cancer and Research, King Faisal Specialist Hospital and Research Center) ;
  • Platanias, Leonidas C. (Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School)
  • Published : 2004.11.30

Abstract

Interferons regulate a number of biological functions including control of cell proliferation, generation of antiviral activities and immumodulation in human cells. Studies by several investigators have identified a number of cellular signaling cascades that are activated during engagement of interferon receptors. The activation of multiple signaling cascades by the interferon receptors appears to be critical for the generation of interferon mediated biological functions and immune surveillance. The present review summarizes the existing knowledge on the multiple signaling cascades activated by Type I interferons. Recent developments in this research area are emphasized and the implications of these new discoveries on our understanding of interferon actions are discussed.

Keywords

References

  1. Abramovich, C., Shulman, L. M., Ratovitski, E., Harroch, S., Tovey, M., Eid, P. and Revel, M. (1994) Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and an associated surface protein in response to IFN$\alpha$ and IFN$\beta$. EMBO J. 13, 5871-5877.
  2. Adam, L., Bandyopadhyay, D. and Kumar, R. (2000) Interferonalpha signaling promotes nucleus-to-cytoplasmic redistribution of p95Vav, and formation of a multisubunit complex involving Vav, Ku80, and Tyk2. Biochem. Biophys. Res. Commun. 267, 692-696. https://doi.org/10.1006/bbrc.1999.1978
  3. Ahmad, S., Alsayed, Y., Druker, B. J. and Platanias, L. C. (1997) The Type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein. J. Biol. Chem 272, 29991-29994. https://doi.org/10.1074/jbc.272.48.29991
  4. Bach, E. A., Aguet, M. and Screiber, R. D. (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15, 571-591.
  5. Beadling, C., Guschin, D., Witthuhn, B. A., Ziemiecki, A., Ihle, J. N., Kerr, I. M. and Cantrell, D.A. (1994) Activation of JAK kinases and STAT proteins by interleukin-2 and interferon alpha, but not the T cell antigen receptor, in human T lymphocytes. EMBO J. 13, 5605-5615.
  6. Brierley, M. M. and Fish E. N. (2002) IFN-alpha/beta receptor interactions to biologic outcomes: understanding the circuitry. J. Interferon Cytokine Res. 22, 835-845. https://doi.org/10.1089/107999002760274845
  7. Chou, M. M. and Blenis, J. (1995) The 70 kDa S6 kinase: regulation of a kinase with multiple roles in mitogenic signalling. Curr. Opin. Cell Biol. 7, 806-814. https://doi.org/10.1016/0955-0674(95)80064-6
  8. Colamonici, O. R. and Domanski, P. (1994) Identification of a novel subunit of the Type I interferon receptor localized to chromosome 21. J. Biol. Chem. 268, 10895-10899.
  9. Colamonici, O. R., Domanski, P., Krolewski, J. J., Fu, X-Y., Reich, N. C., Pfeffer, L. M., Sweet, M. E. and Platanias, L. C. (1994) Interferon alpha signaling in cells expressing the variant form of the type I IFN receptor. J. Biol. Chem. 269, 5660-5665.
  10. Colamonici, O. R., Pfeffer, L., D'Alessandro, F., Platanias, L. C., Rosolen, A., Nordan, R., Cruciani, R. A. and Diaz, M. O. (1992) Multichain structure of the interferon alpha-2 receptor on hematopoietic cells. J. Immunol. 148, 2126-2132.
  11. Colamonici, O. R., Uyttendaele, H., Domanski, P., Yan, H. and Krolewski, J. J. (1994) $p135^{tyk2}$ an interferon-dependent tyrosine kinase, is physically associated with an interferon receptor. J. Biol. Chem. 269, 3518-3522.
  12. Colamonici, O., Yan, H., Domanski, P., Handa, R., Smalley, D., Mullersman, J., Witte, M., Krishnan, K. and Krolewski, J. (1995) Direct binding and tyrosine phosphorylation of the subunit (cloned subunit) of the Type I IFN receptor and the $p135^{tyk2}$ tyrosine kinase. Mol. Cell. Biol. 14, 8133-8142.
  13. Cook, S., Rubinfeld, B., Albert, I. and McCormick, F. (1993) RapV12 antagonizes Ras-dependent activation of ERKI and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12, 3475-3485.
  14. Darnell, J. E. Jr. (1997) Stats and gene regulation. Science 277, 1630-1635. https://doi.org/10.1126/science.277.5332.1630
  15. Diaz, M. O., Pomykala, H. M., Bohlander, S. K., Maltepe, E., Malik, K., Brownstein, B. and Olopade, O. I. (1994) Structure of the human Type I interferon gene cluster determined from a YAC clone contig. Genomics 22, 540-542. https://doi.org/10.1006/geno.1994.1427
  16. Domanski, P., Fish, E., Nadeau, O. W., Witte, M., Platanias, L. C., Yan, H., Krolewski, J., Pitha, P. and Colamonici, O. R. (1997) A region of the beta subunit of the interferon alpha receptor different from box 1 interacts with Jakl and is sufficient to activate the Jak-stat pathway and induce an antiviral state. J. Biol. Chem. 272, 26388-26393. https://doi.org/10.1074/jbc.272.10.6388
  17. Domanski, P., Witte, M., Kellum, M., Rubinstein, M., Hackett, R., Pitha, P. and Colamonici, O. R. (1995) Cloning and expression of a long form of the beta subunit of the interferon alpha/beta receptor that is required for signaling. J. Biol. Chem. 270, 21606-21611. https://doi.org/10.1074/jbc.270.37.21606
  18. Ferrari, S. and Thomas, G. (1994) S6 phosphorylation and the p70s6k/p85s6k. Crit. Rev. Biochem. Mol. Biol. 29, 385-413. https://doi.org/10.3109/10409239409083485
  19. Fish, E. N., Uddin, S., Korkmaz, M. and Platanias, L. C. (1999) Activation of a CrkL-Stat5 signaling complex by type I interferons. J. Biol. Chem. 274, 571-573. https://doi.org/10.1074/jbc.274.2.571
  20. Fu, X-Y. (1992) A transcription factor with SH2 and SH3 domains is directly activated by an interferon á-induced cytoplasmic tyrosine kinase(s). Cell 70, 323-235. https://doi.org/10.1016/0092-8674(92)90106-M
  21. Gotoh, T., Hattori, S., Nakamura, S., Kitayama, H., Noda, M., Takai, Y., Kaibuchi, K., Matsui, H., Hatase, O. and Takahashi H. (1995) Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol. Cell. Biol. 15, 6746-6753.
  22. Gutch, M. J., Daly, C. and Reich N. C. (1992) Tyrosine phosphorylation is required for activation of an $\alpha$-interferonstimulated transcription factor. Proc. Natl. Acad. Sci. USA 8, 11411-11415.
  23. Hemmi, S., Bohni, R., Stark, G., Di-Marco, F. and Aguet, M. (1994) A novel member of the interferon receptor family complements functionality of the murine interferon gamma receptor in human cells. Cell 76, 803-810.
  24. Kitayama, H., Matsuzaki, T., Ikawa, Y. and Noda, M. (1990) Genetic analysis of the Kirsten-ras-revertant 1 gene: Potentiation of its tumor suppressor activity by specific point mutations. Proc. Natl. Acad. Sci. USA 87, 4284-4288. https://doi.org/10.1073/pnas.87.11.4284
  25. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y. and Noda, M. (1989) A ras-related gene with transformation suppressor activity. Cell 56, 77-84. https://doi.org/10.1016/0092-8674(89)90985-9
  26. Lekmine, F., Uddin, S., Sassano, A., Parmar, S., Brachmann, S. M., Majchrzak, B., Sonenberg, N., Hay, N., Fish, E. N. and Platanias, L. C. (2003) Activation of the p70 S6 kinase and phosphorylation of the 4E-BP1 repressor of mRNA translation by type I interferons. J. Biol. Chem. 278, 27772-27780. https://doi.org/10.1074/jbc.M301364200
  27. Lekmine, F., Sassano, A., Uddin, S., Smith, J., Majchrzak, B., Brachmann, S. M., Hay, N., Fish, E. N. and Platanias, L. C. (2004) Interferon-gamma engages the p70 S6 kinase to regulate phosphorylation of the 40S S6 ribosomal protein. Exp. Cell Res. 295, 173-182. https://doi.org/10.1016/j.yexcr.2003.12.021
  28. Lutfalla, G., Holland, S. J. Ginato, E., Monneron, D., Reboul, J., Rogers, N. C., Smith, J. M., Stark, G. R., Gardiner, K., Mogensen, K. E., Kerr, I. M. and Uze, G. (1995) Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by altemative processing of a new member of a cytokine receptor gene cluster. EMBO J. 14, 5100-5108.
  29. Mayer, B. J., Hamaguchi, M. and Hanafusa, H. (1988) A novel viral oncogene with structural homology to phospholipase C. Nature 332, 272-275. https://doi.org/10.1038/332272a0
  30. Meinke, A., Barahmand-Pour, F., Wohrl, S., Stoiber, D. and Decker, T. (1996) Activation of different Stat5 isoforms contributes to cell-type-restricted signaling in response to interferons. Mol. Cell. Biol. 16, 6937-6944.
  31. Micouin, A., Wietzerbin, J., Steunou, V. and Martyre, M. C. (2000) p95 (vav) associates with the type I interferon (IFN) receptor and contributes to the antiproliferative effect of IFNalpha in megakaryocytic cell lines. Oncogene 19, 387-394. https://doi.org/10.1038/sj.onc.1203314
  32. Muller, M., Briscoe, J., Laxton, C., Guschin, D., Ziemiecki, A., Silvennoinen, O., Harpur, A. G., Barbieri, G., Witthuhn, B. A., Schindler, C., Pellegrini, S., Wilks, A. F., Ihle, J. N., Stark, G. R. and Kerr, I. M. (1993) The protein tyrosine kinase JAK- I complements defects in interferon $\alpha$/$\beta$ and $\gamma$ signal transduction. Nature 366, 129-135. https://doi.org/10.1038/366129a0
  33. Novick, D., Cohen, B. and Rubinstein, M. (1994) The human interferon cxlp receptor: characterization and molecular cloning. Cell 77, 391-400. https://doi.org/10.1016/0092-8674(94)90154-6
  34. Ortega, J. A., Ma, A., Shore, N. A., Dukes, P. P. and Merigan, T. C. (1979) Suppressive effect of interferon on erythroid cell proliferation. Exp. Hematol. 7, 145-1450.
  35. Parmar, S. and Platanias, L. (2003) Interferons: mechanisms of action and clinical applications. Curr. Opin. Oncol. 15, 431-439. https://doi.org/10.1097/00001622-200311000-00005
  36. Petska, S., Langer, J. A., Zoon, K. C. and Samuel, C. E. (1987) Interferons and their actions. Annu. Rev. Biochem. 56, 727-777. https://doi.org/10.1146/annurev.bi.56.070187.003455
  37. Pfeffer, L. M., Dinarello, C. A., Herberman, R. B., Williams, B. R., Borden, E. C., Bordens, R., Walter, M. R., Nagabhushan, T. L., Trotta, P. P. and Pestka, S. (1998) Biological properties of recombinant human alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 58, 2489-2499.
  38. Platanias, L. C. and Colamonici O. R. (1992) Interferon a induces rapid tyrosine phosphorylation of the subunit of its receptor. J. Biol. Chem. 267, 24053-24057.
  39. Platanias, L. C., Pfeffer, L. M., Barton, K. P., Vardiman, J. W., Golomb, H. M. and Colamonici, O. R. (1992) Expression of the IFN$\alpha$ receptor in hairy cell leukemia cells. Br. J. Haematol. 82, 541-546. https://doi.org/10.1111/j.1365-2141.1992.tb06464.x
  40. Platanias, L. C., Pfeffer, L. M., Cruciani, R. and Colamonici, O. R. (1993). Characterization of the (x-subunit of the IFN$\alpha$ receptor. Evidence for N-and O-linked glycosylation and association with other surface proteins. J. Immunol. 150, 3382-3388.
  41. Platanias, L. C., Uddin, S., Bruno, E., Korkmaz, M., Ahmad, S., Alsayed, Y., Van Den, B. D., Druker, B. J., Wickrema, A. and Hoffman, R. (1999) CrkL and Crkll participate in the generation of the growth inhibitory effects of interferons on primary hematopoietic progenitors. Exp. Hematol. 27, 1315-1321. https://doi.org/10.1016/S0301-472X(99)00060-0
  42. Platanias, L. C., Uddin, S. and Colamonici, O. R. (1996) Tyrosine phosphorylation of the $\alpha$ and $\beta$ subunits of the Type I interferon receptor. Interferon â selectively induces tyrosine phosphorylation of an $\alpha$ subunit associated protein. J. Biol. Chem. 27, 17761-17764.
  43. Platanias, L. C., Uddin, S., Domanski, P. and Colamonici, O. R. (1996) Differences in signaling between interferon $\alpha$ and $\beta$. Interferon $\beta$ selectively induces the interaction of the $\alpha$ and $\beta$ subunits of the type I interferon receptor. J. Biol. Chem. 271, 23630-23633.
  44. Platanias, L. C., Uddin, S., Yetter, A., Sun, X.-J. and White, M. F. (1996) The type I interferon receptor mediates tyrosine phosphorylation of insulin receptor substrate 2. J. Biol. Chem. 271, 278-282. https://doi.org/10.1074/jbc.271.1.278
  45. Sakatsume, M., Igarashi, K., Winestock, K. D., Garotta, G., Larner, A. C. and Finbloom, D. S. (1995) The Jak kinases differentially associate with the alpha and beta (accessory factor) chains of the interferon gamma receptor to form a functional receptor unit capable of activating STAT transcription factors. J. Biol. Chem. 270, 17528-17534. https://doi.org/10.1074/jbc.270.29.17528
  46. Sattler, M. and Salgia, R. (1998) Role of the adapter protein CrkL in signal transduction of normal hematopoietic and BCRIABLtransformed cells. Leukemia 12, 637-644. https://doi.org/10.1038/sj.leu.2401010
  47. Schindler, C., Shuai, K., Prezioso, V. R. and Damell, Jr. J. E. (1992) Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic factor. Science 257, 809-813. https://doi.org/10.1126/science.1496401
  48. Silvenoinen, O., Ihle, J, N., Schlessinger, J. and Levy, D. E. (1993) Interferon-induced nuclear signaling by Jak protein tyrosine kinases. Nature 366, 583-585. https://doi.org/10.1038/366583a0
  49. Soh, J., Donnelly, R. J., Kotenko, S., Mariano, T. M., Cook, J. R., Wang, N., Emanuel, S., Schwartz, B., Miki, T. and Pestka, S. (1994) Identification and sequence of an accessory factor required for activation of the human interferon gamma receptor. Cell 76, 793-802. https://doi.org/10.1016/0092-8674(94)90354-9
  50. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. and Schreiber R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 227-264. https://doi.org/10.1146/annurev.biochem.67.1.227
  51. Thyrell, L., Hjortsberg, L., Arulampalam, V., Panaretakis, T., Uhles, S., Dagnell, M., Zhivotovsky, B., Leibiger, I., Grander, D. and Pokrovskaja, K. (2004) Interferon alpha-induced apoptosis in tumor cells is mediated through the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. J. Biol. Chem. 279, 24152-24162. https://doi.org/10.1074/jbc.M312219200
  52. Uddin, S., Alsayed, Y., Grumbach, I., Woodson, J. and Platanias, L. C. (1999) Cellular pathways activated by interferons in haematopoietic cells. Haema 2, 192-197.
  53. Uddin, S., Chamdin, A. and Platanias, L. C. (1995) Interaction of the transcriptional activator Stat-2 with the Type I IFN receptor. J. Biol. Chem. 270, 24627-24630. https://doi.org/10.1074/jbc.270.42.24627
  54. Uddin, S., Fish, E. N., Sher, D., Gardziola, C., Colamonici, O. R., Kellum, M., Pitha, P. M., White, M. F. and Platanias, L. C. (1997a) The IRS-pathway operates distinctively from the Statpathway in hematopoietic cells and transduces common and distinct signals during engagement of the insulin or interferon $\alpha$ receptors. Blood 90, 2574-2582.
  55. Uddin, S., Fish, E. N., Sher, D. A., Gardziola, C., White, M. F. and Platanias L. C. (1997b) Activation of the phosphatidylinositol 3'-kinase serine kinase by IFN$\alpha$. J. Immunol. 158, 2390-2397.
  56. Uddin, S., Gardziola, C., Dangat, A., Yi, T. and Platanias, L. C. (1996) Interaction of the c-cbl proto-oncogene product with the Tyk-2 protein tyrosine kinase. Biochem. Biophys. Res. Commun. 225, 833-838. https://doi.org/10.1006/bbrc.1996.1259
  57. Uddin, S., Grumbach, I. M., Yi, T., Colamonici, O. R. and Platanias, L. C. (1998). Interferon alpha activates the tyrosine kinase Lyn in haemopoietic cells. Br. J. Haematol. 101, 446-449. https://doi.org/10.1046/j.1365-2141.1998.00731.x
  58. Uddin, S., Lekmine, F., Sassano, A., Rui, H., Fish, E. N. and Platanias, L. C. (2003). Role of Stat5 in type I interferonsignaling and transcriptional regulation. Biochem. Biophys. Res. Commun. 308, 325-330 https://doi.org/10.1016/S0006-291X(03)01382-2
  59. Uddin, S., Lekmine, F., Sharma, N., Majchrzak, B., Mayer, I., Young, P. R., Bokoch, G. M., Fish, E. N. and Platanias, L. C. (2000) The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon alpha-dependent transcriptional activation but not serine phosphorylation of Stat proteins. J. Biol. Chem. 275, 27634-27640.
  60. Uddin, S., Majchrzak, B., Woodson, J., Arunkumar, P., Alsayed, Y., Pine, R., Young, P.R., Fish, E.N. and Platanias LC. (1999) Activation of the p38 mitogen-activated protein kinase by type I interferons. J. Biol. Chem. 274, 30127-30131. https://doi.org/10.1074/jbc.274.42.30127
  61. Uddin, S., Sassano, A., Deb, D. K., Verma, A., Majchrzak, B., Rahman, A., Malik, A. B., Fish, E. N. and Platanias, L. C. (2002) Protein kinase C-delta (PKC-delta) is activated by type I interferons and mediates phosphorylation of Stat1 on serine 727. J. Biol. Chem. 277, 14408-14416. https://doi.org/10.1074/jbc.M109671200
  62. Uddin, S., Sher, D. A., Alsayed, Y., Pons, S., Colamonici, O. R., Fish, E. N., White, M. F. and Platanias, L. C. (1997d) Interaction of p59fyn with interferon-activated Jak kinases. Biochem. Biophys. Res. Commun. 235, 83-88. https://doi.org/10.1006/bbrc.1997.6741
  63. Uddin, S., Sweet, M., Colamonici, O. R., Krolewski, J. J. and Platanias, L. C (1997c) The vav proto-oncogene product (p95vav) interacts with the Tyk-2 protein tyrosine kinase. FEBS Lett. 403, 31-34. https://doi.org/10.1016/S0014-5793(97)00023-9
  64. Uddin, S., Yenush, L., Sun, X-J., Sweet, M. E., White, M. F. and Platanias, L. C. (1995) Interferon $\alpha$ engages the insulin receptor substrate-I to associate with the phosphatidylinositol 3'-kinase. J. Biol. Chem. 270, 15938-159341. https://doi.org/10.1074/jbc.270.27.15938
  65. Uze, G., Lutfalla, G. and Mongensen, K. E. (1995) $\alpha$ and $\beta$ interferons and their receptor and their friends and relations. J. Interferon Res. 15, 3-26. https://doi.org/10.1089/jir.1995.15.3
  66. Uze, G., Lutfalla, G. and Gresser, I. (1990) Genetic transfer of a functional human interferon $\alpha$ receptor into mouse cells: Cloning and expression of its CDNA. Cell 60, 225-234. https://doi.org/10.1016/0092-8674(90)90738-Z
  67. White, M. F. (1998) The IRS-signaling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182, 3-11. https://doi.org/10.1023/A:1006806722619
  68. Wen, Z. and Darnell, J. E. Jr. (1997) Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res. 25, 2062-2067. https://doi.org/10.1093/nar/25.11.2062
  69. Yeh, T. C. and Pellegrini, S. (1999) The Janus kinase family of protein tyrosine kinases and their role in signaling. Cell Mol. Life Sci. 55, 1523-1534. https://doi.org/10.1007/s000180050392
  70. Zhu, X., Wen, Z., Xu, L. Z. and Darnell J. E. Jr. (1997) Stat1 serine phosphorylation occurs independently of tyrosine phosphorylation and requires an activated Jak2 kinase. Mol. Cell Biol. 17, 6618-6623.
  71. Zhang, J. J., Zhao, Y., Chait, B. T., Lathem, W. W., Ritzi, M., Knippers, R. and Darnell, J. E. Jr. (1998) Ser727-dependent recruitment of MCM5 by Stat1alpha in IFN-gamma-induced transcriptional activation. EMBO J. 17, 6963-6971.

Cited by

  1. Identification of GAS-dependent interferon-sensitive target genes whose transcription is STAT2-dependent but ISGF3-independent vol.273, pp.7, 2006, https://doi.org/10.1111/j.1742-4658.2006.05176.x
  2. Treatment with type I interferons induces a regulatory T cell subset in peripheral blood mononuclear cells from multiple sclerosis patients vol.8, pp.6, 2008, https://doi.org/10.1016/j.intimp.2008.02.003
  3. Early gene expression events in ferrets in response to SARS coronavirus infection versus direct interferon-alpha2b stimulation vol.409, pp.1, 2011, https://doi.org/10.1016/j.virol.2010.10.002
  4. Immunomodulatory Effects of Interferons in Malignancies vol.33, pp.4, 2013, https://doi.org/10.1089/jir.2012.0167
  5. Targeted immunotherapy using anti-CD138-interferon α fusion proteins and bortezomib results in synergistic protection against multiple myeloma vol.8, pp.7, 2016, https://doi.org/10.1080/19420862.2016.1207030
  6. Expression of interferon-γ, interferon-α and related genes in individuals with Down syndrome and periodontitis vol.60, pp.3, 2012, https://doi.org/10.1016/j.cyto.2012.08.020
  7. Effect of IFN-α on KC and LIX expression: Role of STAT1 and its effect on neutrophil recruitment to the spleen after lipopolysaccharide stimulation vol.56, pp.1-2, 2013, https://doi.org/10.1016/j.molimm.2013.04.001
  8. Impact of STAT4 gene silencing on the expression profile of proteins in EL-4 cells vol.54, pp.18, 2009, https://doi.org/10.1007/s11434-009-0468-9
  9. The role of type I interferons and other cytokines in dermatomyositis vol.73, pp.2, 2015, https://doi.org/10.1016/j.cyto.2014.11.026
  10. Non-conventional signal transduction by type 1 interferons: The NF-κB pathway vol.102, pp.5, 2007, https://doi.org/10.1002/jcb.21535
  11. Type I IFNs and their role in the development of autoimmune diseases vol.8, pp.4, 2009, https://doi.org/10.1517/14740330903066726
  12. S-glutathionylation of IRF3 regulates IRF3–CBP interaction and activation of the IFNβ pathway vol.27, pp.6, 2008, https://doi.org/10.1038/emboj.2008.28
  13. Immunomodulatory medicines for multiple sclerosis: Progress and prospects vol.72, pp.8, 2011, https://doi.org/10.1002/ddr.20476
  14. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase vol.319, pp.10, 2013, https://doi.org/10.1016/j.yexcr.2013.02.024
  15. p53-paralog DNp73 oncogene is repressed by IFNα/STAT2 through the recruitment of the Ezh2 polycomb group transcriptional repressor vol.30, pp.23, 2011, https://doi.org/10.1038/onc.2010.635
  16. Recognition of interferon-inducible sites, promoters, and enhancers vol.8, pp.1, 2007, https://doi.org/10.1186/1471-2105-8-56