DOI QR코드

DOI QR Code

Molecular Cloning and Determination of the Nucleotide Sequence of Raw Starch Digesting α-Amylase from Aspergillus awamori KT-11

  • Matsubara, Takayoshi (Laboratory of Enzyme Chemistry, Graduate School of Science, Osaka City University) ;
  • Ammar, Youssef Ben (Laboratory of Enzyme Chemistry, Graduate School of Science, Osaka City University) ;
  • Anindyawati, Trisanti (R&D Center for Biotechnology, Indonesian Institute of Science (LIPI)) ;
  • Yamamoto, Satoru (Laboratory of Enzyme Technology, Department of Biotechnology, Faculty of Life Science & Biotechnology, Fukuyama University) ;
  • Ito, Kazuo (Laboratory of Enzyme Chemistry, Graduate School of Science, Osaka City University) ;
  • Iizuka, Masaru (Laboratory of Enzyme Chemistry, Graduate School of Science, Osaka City University) ;
  • Minamiura, Noshi (Laboratory of Enzyme Chemistry, Graduate School of Science, Osaka City University)
  • Published : 2004.07.31

Abstract

Complementary DNAs encoding $\alpha$-amylases (Amyl I, Amyl III) and glucoamylase (GA I) were cloned from Aspergillus awamori KT-11 and their nucleotide sequences were determined. The sequence of Amyl III that was a raw starch digesting $\alpha$-amylase was found to consist of a 1,902 bp open reading frame encoding 634 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. On the other hand, the sequence of Amyl I, which cannot act on raw starch, consisted of a 1,500 bp ORF encoding 499 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. The sequence of GA I consisted of a 1,920 bp ORF that encoded 639 amino acids. The signal peptide was composed of 24 amino acids. The amino acid sequence of Amyl III from the N-terminus to the amino acid number 499 showed 63.3% homology with Amyl I. However, the amino acid sequence from the amino acid number 501 to C-terminus, including the raw-starch-affinity site and the TS region rich in threonine and serine, showed 66.9% homology with GA I.

Keywords

References

  1. Anindyawati, T., Ann, Y. G., Ito, K., Iizuka, M. and Minamiura, N. (1998a) Two kinds of novel $\alpha$-glucosidases from Aspergillus awamori KT-11: Their purifications, properties and specificities. J. Ferment. Bioeng. 85, 465-469. https://doi.org/10.1016/S0922-338X(98)80063-9
  2. Anindyawati, T., Melliawati, R., Ito, K., Iizuka, M. and Minamiura, N. (1998b) Three different types of $\alpha$-amylases from Aspergillus awamori KT-11: Their purifications, properties and specificities. Biosci. Biotechnol. Biochem. 62, 1351-1357. https://doi.org/10.1271/bbb.62.1351
  3. Belshaw, N. J. and Williamson, G. (1993) Specificity of the binding domain of glucoamylase 1. Eur. J. Biochem. 211, 717-724. https://doi.org/10.1111/j.1432-1033.1993.tb17601.x
  4. Boel, E., Hjort, I., Svensson, B., Norris, F., Norris, K. E. and Fiil, N. P. (1984) Glucoamylases G1 and G2 from Aspergillus niger are synthesized from two different but closely related mRNAs. EMBO J. 3, 1097-1102.
  5. Chen, H. M., Ford, C. and Reilly, P. J. (1994) Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Biochem. J. 301, 275-281.
  6. De Cordt, S., Hendrickx, M., Maesmans, G. and Tobback, P. (1994) The influence of polyalcohols and carbohydrates on the thermostability of $\alpha$-amylase. Biotech. Biochem. 43, 107-114.
  7. Dube, S., Fisher, J. W. and Powell, J. S. (1988) Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J. Biol. Chem. 263, 17516-17521.
  8. Gerard, C. (1990) Purification of glycoproteins. Methods Enzymol. 182, 529-539. https://doi.org/10.1016/0076-6879(90)82042-Z
  9. Gunnarsson, A. B., Nilsson, B. and Svensson, S. (1984) Structural studies on the O-glycosidically linked carbohydrate chains of glucoamylase G1 from Aspergillus niger. Eur. J. Biochem. 145, 463-467. https://doi.org/10.1111/j.1432-1033.1984.tb08578.x
  10. Hata, Y., Kitamoto, K., Gomi, K., Kumagai, C., Tamura, G. and Hara, S. (1991) The glucoamylase cDNA from Aspergillus oryzae: its cloning, nucleotide sequence, and expression in Saccharomyces cerevisiae. Agric. Biol. Chem. 55, 941-949. https://doi.org/10.1271/bbb1961.55.941
  11. Hayashida, S., Teramoto, Y. and Inoue, T. (1988) Production and characteristics of raw-potato-starch-digesting $\alpha$-amylase from Bacillus subtilis 65. Appl. Environ. Microbiol. 54, 1516-1522.
  12. Hayashida, S., Nakahara, K., Kuroda, K., Miyata, T. and Iwanaga, S. (1989) Structure of the raw-starch-affinity site on the Aspergillus awamori var. kawachii glucoamylase I molecule. Agric. Biol. Chem. 53, 135-141. https://doi.org/10.1271/bbb1961.53.135
  13. Hayashida, S., Teramoto, Y., Inoue, T. and Mitsuike, S. (1990) Occurrence of an affinity site apart from the active site on the raw-starch-digesting but non-raw-starch-adsorbable Bacillus subtilis 65 $\alpha$-amylase. Appl. Environ. Microbiol. 56, 2584-2586.
  14. Iefuji, H., Chino, M., Kato, M. and Iimura, Y. (1996) Raw-starchdigesting and thermostable $\alpha$-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem. J. 318, 989-996.
  15. Kaneko, A. Sudo, S., Sakamoto, Y., Tamura, G., Ishikawa, T, and Ohba, T. (1996) Molecular-cloning and determination of the nucleotide-sequence of a gene encoding an acid-stable $\alpha$-amylase from Aspergillus kawachii. J. Ferment. Bioeng. 81, 292-298. https://doi.org/10.1016/0922-338X(96)80579-4
  16. Kin, J., Nanmori, T. and Shinke, R. (1989) Thermostable, rawstarch- digesting amylase from Bacillus stearothermophilus. Appl. Environ. Mt'crob. 55, 1638-1639.
  17. Korman, D. R., Bayliss, F. T., Barnett, C. C., Carmona, C. L., Kodama, K. H., Royer, T. J., Thompson, S. A., Ward, M., Wilson, L. J. and Berka R. M. (1990) Cloning, characterization, and expression of two $\alpha$-amylase genes from Aspergillus niger var. awamori. Curr. Genet. 17, 203-212. https://doi.org/10.1007/BF00312611
  18. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage $T_{4}$. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  19. Mizokami, K. (1988) Streptococcus bovis $\alpha$-amylase; in Handbook of Amylases, The Amylase Research Society of Japan (eds.) pp. 49-50, Pergamon Press, Oxford, UK.
  20. Monma, M., Yamamoto, Y., Kagei, N. and Kainuma, K. (1989) Raw starch digestion by $\alpha$-amylase and glucoamylase from Chalara paradoxa. Starch/Starke 41, 382-385. https://doi.org/10.1002/star.19890411005
  21. Nunberg, J. H., Meade, J. H., Cole, G., Lawyer, F. C., McCabe, P., Schweickart, V., Tal, R., Wittman, V. P., Flatgaard, J. E. and Innis, M. A. (1984) Molecular cloning and characterization of the glucoamylase gene of Aspergillus awamori. Mol. Cell. Biol. 4, 2306-2315.
  22. Punpeng, B., Nakata, Y., Goto, M., Teramoto, Y. and Hayashida, S. (1992) A novel raw-starch-digesting yeast $\alpha$-amylase from Lypomyces starkeyi HN-606. J. Ferment. Bioeng. 73, 108-111. https://doi.org/10.1016/0922-338X(92)90397-D
  23. Semimaru, T., Goto, M., Furukawa, K. and Hayashida, S. (1995) Functional analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi. Appl Environ Microbiol. 61, 2885-2890.
  24. Shibuya, I., Gomi, K., Iimura, Y., Takahashi, K., Tamura, G. and Hara, S. (1990) Molecular cloning of the glucoamylase gene of Aspergillus shirousamii and its expression in Aspergillus poryzae. Agric. Biol. Chem. 54, 1905-1914. https://doi.org/10.1271/bbb1961.54.1905
  25. Somogyi, M. (1951) Notes on sugar determination. J. Biol. Chem. 195, 19-23.
  26. Stoffer, B., Frandsen, T. P., Busk, P. K., Schneider, P., Svendsen, I. and Svensson, B. (1993) Production, purification and characterization of the catalytic domain of glucoamylase from Aspergillus niger. Biochem. J. 292, 197-202.
  27. Tada S., Iimura Y., Gomi K., Takahashi K., Hara S. and Yoshizawa K. (1989) Cloning and nucleotide sequence of the genomic Taka-amylase A gene of Aspergillus oryzae. Agric. Biol. Chem. 53, 593-599. https://doi.org/10.1271/bbb1961.53.593
  28. Takahashi, T., Kato, K., Ikegami, Y. and Irie, M. (1985) Different behavior towards raw starch of three forms of glucoamylase from a Rhizopus sp. J. Biochem. 98, 663-671.
  29. Taniguchi, H., Jae, C. M., Yoshigi, N. and Maruyama, Y. (1983) Purification of Bacillus circulans F-2 amylase and its general properties. Agric. Biol. Chem. 47, 511-519. https://doi.org/10.1271/bbb1961.47.511
  30. Ueda, S. (1981) Fungal glucoamylases and raw starch digestion. Trends Biochem Sci. 6, 89-90. https://doi.org/10.1016/0968-0004(81)90032-3
  31. Williamson, G., Belshaw, N. J. and Williamson, M. P. (1992) O-Glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Biochem. J. 282, 423-428.
  32. Wirsel, S. Lachmund, A., Wildhardt, G. and Ruttkowski, E. (1989) Three $\alpha$-amylase genes of Aspergillus oryzae exhibit identical intron-exon organization. Mol. Microbiol. 3, 3-14. https://doi.org/10.1111/j.1365-2958.1989.tb00097.x

Cited by

  1. Recent Advances in Microbial Raw Starch Degrading Enzymes vol.160, pp.4, 2010, https://doi.org/10.1007/s12010-009-8579-y
  2. Some Distinguishable Properties between Acid-Stable and Neutral Types of α-Amylases from Acid-Producing Koji vol.104, pp.5, 2007, https://doi.org/10.1263/jbb.104.353
  3. Identification and Manipulation of Subsite Structure and Starch Granule Binding Site in Plant .ALPHA.-Amylase vol.53, pp.1, 2006, https://doi.org/10.5458/jag.53.51
  4. Improved Production of Raw Starch Degrading Enzyme by Aspergillus oryzae F-30 Using Methyl Glucoside Sesqui-Stearate vol.159, pp.1, 2009, https://doi.org/10.1007/s12010-008-8413-y
  5. Molecular cloning and characterization of an α-amylase with raw starch digestibility fromBacillus sp. YX-1 vol.59, pp.1, 2009, https://doi.org/10.1007/BF03175604
  6. Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry vol.131, pp.4, 2012, https://doi.org/10.1016/j.foodchem.2011.10.036
  7. EngineeringSaccharomyces cerevisiaefor direct conversion of raw, uncooked or granular starch to ethanol vol.35, pp.3, 2015, https://doi.org/10.3109/07388551.2014.888048