DOI QR코드

DOI QR Code

Species Identification of the Tropical Abalone (Haliotis asinina, Haliotis ovina, and Haliotis varia) in Thailand Using RAPD and SCAR Markers

  • Klinbunga, Sirawut (Marine Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)) ;
  • Amparyup, Piti (Program of Biotechnology, Faculty of Science, Chulalongkorn University) ;
  • Leelatanawit, Rungnapa (Program of Biotechnology, Faculty of Science, Chulalongkorn University) ;
  • Tassanakajon, Anchalee (Department of Biochemistry, Faculty of Science, Chulalongkorn University) ;
  • Hirono, Ikuo (Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology) ;
  • Aoki, Takashi (Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology) ;
  • Jarayabhand, Padermsak (Aquatic Resources Research Institute, Chulalongkorn University) ;
  • Menasveta, Piamsak (Marine Biotechnology Research Unit, National Center for Genetic, Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA))
  • Published : 2004.03.31

Abstract

A randomly amplified polymorphic DNA (RAPD) analysis was used to identify the species- and population-specific markers of abalone; Haliotis asinina, H. ovina, and H. varia in Thai waters. Fifteen species-specific and six population-specific RAPD markers were identified. In addition, an 1650 bp band (UBC195) that was restricted to H. ovina from the Gulf of Thailand (east) was also found. All of the specific RAPD markers were cloned and sequenced. Twenty pairs of primers were designed and specificity-tested (N = 12 and 4 for target and non-target species, respectively). Seven primer pairs (CUHA1, 2, 4, 11, 12, 13, and 14) were specifically amplified by H. asinina DNA, whereas a single pair of primers showed specificity with H. ovina (CUHO3) and H. varia (CUHV1), respectively. Four primer pairs, including CUHA2, CUHA12, CUHO3, and CUHV1, were further examined against 216 individuals of abalone (N = 111, 73, and 32, respectively). Results indicated the species-specific nature of all of them, except CUHO3, with the sensitivity of detection of 100 pg and 20 pg of the target DNA template for CUHA2 and CUHA12 and CUHV1, respectively. The species-origin of the frozen, ethanol-preserved, dried, and boiled H. asinina specimens could also be successfully identified by CUHA2.

Keywords

References

  1. Avise, J. C. (1994) Molecular Markers, Natural History and Evolution, Chapman and Hall, London, UK.
  2. Brown, L. D. (1995) Genetic evidence for hybridization between Haliotis rubra and H. laevigata. Mar. Biol. 123, 89-93. https://doi.org/10.1007/BF00350327
  3. Calvalho, G. R. and Hauser, L. (1994) Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fisheries 4, 326-350. https://doi.org/10.1007/BF00042908
  4. Dower, W. J., Miller, J. F. and Ragsdale, C. W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 612-617.
  5. Fritsch, P., Hanson, M. A., Spore, C. D., Pack, P. E. and Rieseberg, L. H. (1993) Constancy of RAPD primer amplification strength among distantly related taxa of flowering plants. Plant Mol. Biol. Rep. 11, 10-20. https://doi.org/10.1007/BF02670555
  6. Gordon, H. R. (2000) World abalone supply, markets and pricing: historical, current and future prospectives. 4th International Abalone Symposium, 6-11 February, 2000, University of Cape Town, Cape Town, South Africa.
  7. Hadrys, H., Balick, M. and Schierwater, B. (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1, 55-63. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
  8. Heipel, D. A., Bishop, J. D. D., Brand, A. R. and Thorpe, J. P. (1998) Population genetic differentiation of the great scallop Pecten maximus in western Britain investigated by randomly amplified polymorphic DNA. Mar. Ecol. Prog. Ser. 162, 163-171. https://doi.org/10.3354/meps162163
  9. Jarayabhand, P. and Paphavasit, N. (1996) A review of the culture of tropical abalone with special reference to Thailand. Aquaculture 140, 159-168. https://doi.org/10.1016/0044-8486(95)01194-3
  10. Jarayabhand, P., Pripue, P., Klinbunga, S. and Tassanakajon, A. (2002) Identification of species-diagnostic markers of abalone in Thailand using PCR-RFLP of 16S rDNA. Fisheries Sci. 68(suppl II), 1091-1094.
  11. Klinbunga, S., Sodsuk, S., Penman, D. J. and McAndrew, B. J. (1996) An improved protocol for total DNA isolation and visualization of mtDNA RFLP(s) in the giant tiger prawn, Penaeus monodon. Thai J. Aquat. Sci. 3, 36-41.
  12. Klinbunga, S., Ampayup, P., Tassanakajon, A., Jarayabhand, P. and Yoosukh, W. (2000) Development of species-specific markers of the tropical oyster (Crassostrea belcheri) in Thailand. Mar. Biotechnol. 2, 476-484.
  13. Klinbunga, S., Ampayup, P., Tassanakajon, A., Jarayabhand, P. and Yoosukh, W. (2001) Genetic diversity and molecular markers of cupped oysters (Genera Crassostrea, Saccostrea and Striostrea) in Thailand revealed by RAPD analysis. Mar. Biotechnol. 3, 133-144. https://doi.org/10.1007/s101260000057
  14. Klinbunga, S., Pripue, P., Khamnamtong, N., Tassanakajon, A., Jarayabhand, P. and Menasveta, P. (2003) Genetic diversity and molecular markers of the tropical abalone (Haliotis asinina) in Thailand. Mar. Biotechnol. (in press).
  15. Lee, Y. H. and Vacquier, V. D. (1995) Evolution and systematics in Haliotidae (Mollusca: Gastropoda): inferences from DNA sequences of sperm lysin. Mar. Biol. 124, 267-278. https://doi.org/10.1007/BF00347131
  16. Maniatis, T., Frisch, E. F., and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, USA.
  17. Muchmore, M. E., Moy, G. W., Swanson, W. J. and Vacquier, V. D. (1998) Direct sequencing of genomic DNA for characterization of a satellite DNA in five species of Eastern Pacific abalone. Mol. Mar. Biol. Biotechnol. 7, 1-6.
  18. Naganuma, T., Hisadome, K., Shiraishi, K. and Kojima, H. (1998) Molecular distinction of two resemblant abalones, Haliotis discus discus and Haliotis discus hannai by 18S rDNA sequences. J. Mar. Biotechnol. 6, 59-61.
  19. Nateewathana, A. and Bussarawit, S. (1988) Abundance and distribution of abalone along the Andaman Sea coast of Thailand. Kasetsart J. (Natural Science) 22, 8-15.
  20. Singhagraiwan, T. and Doi, M. (1993) Seed production and culture of a tropical abalone, Haliotis asinina Linne. Department of Fisheries, Ministry of Agriculture and Cooperatives, Thailand.
  21. Sweijd, N. A., Bowie, R. C. K., Lopata, A. L., Marinaki, A. M., Harley, E. H. and Cook, P. A. (1998) A PCR technique for forensic, species-level identification of abalone tissue. J. Shellfish Res. 17, 889-895.
  22. Tassanakajon, A., Pongsomboon, S., Jarayabhand, P., Klinbunga, S. and Boonsaeng, V. (1998) Genetic structure in wild populations of the black tiger shrimp (Penaeus monodon) using randomly amplified polymorphic DNA analysis. J. Mar. Biotechnol. 6, 249-254.
  23. Tookvinas, S., Leknim, V., Donyadol, Y., Predalampabut, Y. and Paengmark, P. (1986) A survey of species and distribution of abalone (Haliotis spp.) in Surat Thani, Nakhon Si Thammarat and Songkla. Tech. Rep. No. 1/1986 NICA, 16 pp.
  24. Vacquier, V. D., Carner, K. R. and Stout, C. D. (1990) Speciesspecific sequences of abalone lysin, the sperm protein that creates a hole in the egg envelope. Proc. Natl. Acad. Sci. USA 87, 5792-5796.
  25. Walsh, P. S., Metzger, D. A. and Higuche, R. (1994) Chelex$^{\circledR}$ 100 as a medium for simple extraction of DNA for PCR-based typing from forensic materials. Biotechniques 10, 506-513.
  26. Weising, K., Nybom, H., Wolf, K. and Meyer, W. (1995). DNA Fingerprinting in Plant and Fungi. CRC Press, Boca Raton, USA.
  27. Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213-7218. https://doi.org/10.1093/nar/18.24.7213
  28. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531-6535. https://doi.org/10.1093/nar/18.22.6531

Cited by

  1. MOLECULAR MARKERS USED TO ANALYZE SPECIES-SPECIFIC STATUS IN ABALONES WITH AMBIGUOUS MORPHOLOGY vol.26, pp.3, 2007, https://doi.org/10.2983/0730-8000(2007)26[833:MMUTAS]2.0.CO;2
  2. Species identification of the blue swimming crab Portunus pelagicus in Thai waters using mtDNA and RAPD-derived SCAR markers vol.308, 2010, https://doi.org/10.1016/j.aquaculture.2010.06.033
  3. PCR-SSCP method for genetic differentiation of canned abalone and commercial gastropods in the Mexican retail market vol.22, pp.7, 2011, https://doi.org/10.1016/j.foodcont.2010.11.025
  4. Genetic variation, population structure and identification of yellow catfish, Mystus nemurus (C&V) in Thailand using RAPD, ISSR and SCAR marker vol.39, pp.5, 2012, https://doi.org/10.1007/s11033-011-1317-x
  5. Mitochondrial DNA Diversity and Genetic Differentiation of the Honeybee (Apis cerana) in Thailand vol.44, pp.5-6, 2006, https://doi.org/10.1007/s10528-006-9030-5
  6. Genetic diversity of wild and domesticated stocks of Thai abalone, Haliotis asinina (Haliotidae), analyzed by single-strand conformational polymorphism of AFLP-derived markers vol.9, pp.2, 2010, https://doi.org/10.4238/vol9-2gmr808
  7. Genetic Heterogeneity of the Tropical Abalone (Haliotis asinina) Revealed by RAPD and Microsatellite Analyses vol.38, pp.2, 2005, https://doi.org/10.5483/BMBRep.2005.38.2.182