DOI QR코드

DOI QR Code

Identification of Quantitative Trait Loci (QTL) Affecting Teat Number in Pigs

  • Kim, Tae-Hun (National Livestock Research Institute, RDA) ;
  • Choi, Bong-Hwan (National Livestock Research Institute, RDA) ;
  • Yoon, Du-Hak (National Livestock Research Institute, RDA) ;
  • Park, Eung-Woo (National Livestock Research Institute, RDA) ;
  • Jeon, Jin-Tae (Division of Animal Science, College of Agriculture and Life Science, Gyeongsang National University) ;
  • Han, Jae-Young (Department of Animal Science, College of Agriculture and Life Science, Seoul National University) ;
  • Oh, Sung-Jong (National Livestock Research Institute, RDA) ;
  • Cheong, Il-Cheong (Department of Animal Science, College of Agriculture and Life Science, Seoul National University)
  • Received : 2003.12.04
  • Accepted : 2004.05.29
  • Published : 2004.09.01

Abstract

Quantitative trait loci (QTL) mapping can be applied to detect chromosomal locations that control economic traits in farm animals. Teat number has been considered as one of the most important factors to evaluate mothering ability of sow. Especially, teat number is more important when the number is less than the litter size. This study was conducted to identify QTL affecting teat number in the Korean native pig${\times}$Landrace resource family. A total of 240 animals was genotyped for 132 polymorphic microsatellites covering the 18 pig autosomes. Mean and standard deviation of teat number in $F_2$animals is 13.46${\pm}$1.40. QTL was analyzed using F2 QTL Analysis Servlet of QTL express. A QTL for teat number on SSC9 was significant at the 1% chromosome-wide level and three suggestive QTL were detected on SSC3, 7 and 14. All QTL detected in this study had additive effect and Landrace alleles were associated with higher teat number in comparison with Korean native pig for three of four QTL.

Keywords

References

  1. Andersson-Eklund, L., L. Marklund, K. Lundstrom, C. S. Haley, K. Andersson, I. Hansson, M. Moller and L. Andersson. 1998. Mapping quantititative trait loci for carcass and meat traits in a Wild $boar{\times}Large$ White intercross. J. Anim. Sci. 76:694-700.
  2. Andersson, L., C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson, K. Andersson, L. Andersson-Eklund, I. Edfors-Lilja, M. Fredholm, I. Hansson, J. Hakansson and K. Lundström. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Sci. 263:1771-1774.
  3. Bidanel, J. P., D. Milan, N. Iannuccelli, Y. Amigues, M. Y. Boscher, F. Bourgeois, J. C. Caritez, J. Gruand, P. L. Roy, H. Lagant, R. Quintanilla, C. Renard, J. Gellin, L. Ollivier and C. Chevalet. 2001. Detection of quantitative trait loci for growth and fatness in pigs. Genet. Sel. Evol. 33:289-309.
  4. Cassady, J. P., R. K. Johnson, D. Pomp, G. A. Rohrer, L. D. Van Vleck, E. K. Spiegel and K. M. Gilson. 2001. Idenitification of quantitative trait loci affecting reproduction in pigs. J. Anim. Sci. 79:623-633.
  5. De Koning, D. J., L. L. G. Janss, A. P. Rattink, P. A. M. van Oers, B. J. de Vries, M. A. M. Groenen, J. J. der Poel, P. N. de Groot, E. W. Brascamp and J. A. M. van Arendonk. 1999. Detection of quantitative trait loci for back fat thickness and intramuscular fat content in Pigs (Sus scrofa). Genetics 152:1679-1690.
  6. De Koning, D., B. Harlizius, A. P. Rattink, M. A. M. Groenen, E. W. Brascamp and J. A. M. van Arendonk. 2001. Detection and characterization of quantitative trait loci for meat quality traits in pigs. J. Anim. Sci. 79:2812-2819.
  7. De Koning, D., A. P. Rattink, B. Harlizius, A. M. J. van Arendonk, W. E. Brascamp and A. M. Groenen. 2000b. Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc. Natl. Acad. Sci. 97:7947-7950.
  8. Green, P., K. Falls and S. Crooks. 1990. Documentation for CRIMAP, version 2.4. Washington Univ. School of Medicine, St. Louis, MO.
  9. Hirooka, H., D. J. de Koning, B. Harlizius, J. A. van Arendonk, A. P. Rattink, M. A. Groenen, E. W. Brascamp and H. Bovenhuis. 2001. A whole-genome scan for quantitative trait loci affecting teat number in pigs. J. Anim. Sci. 79:2320-2326.
  10. Lande, R. and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743-756.
  11. Malek, M., J. C. M. Dekkers, H. K. Lee, T. Baas and M. F. Rothschild. 2001b. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm Genome. 12:637-645.
  12. Malek, M., J. C. M. Dekkers, H. K. Lee, T. Baas and M. F. Rothschild. 2001a. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm. Genome. 12:630-636.
  13. Paszek, A. A., P. J. Wilkie, G. H. Flickinger, G. A. Rohrer, L. J. Alexander, C. W. Beattie and L. B. Schook. 1999. Interval mapping of growth in divergent swine cross. Mamm Genome 10:117-122.
  14. Pumfrey, R. A., R. K. Johson, P. J. Cunningham and D. R. Zimmerman. 1980. Inheritance of teat number and its relationship to material traits in swine. J. Anim. Sci. 50:1057-1060.
  15. Rathje, T. A., G. A. Rohrer and R. K. Johnson. 1997. Evidence for quantitative trait loci affecting ovulation rate in pigs. J. Anim. Sci. 75:1486-1494.
  16. Rohrer, G. A., L. J. Alexander, Z. Hu, T. P. L. Smith, J. W. Keele and C. W. Beattie. 1996. A comprehensive map of the porcine genome. Genome. Res. 6:371-391.
  17. Rohrer, G. A. and J. Keele. 1998. Identification of quantitative trait loci affecting carcass composition in swine II. Muscling and wholesale product trait yield traits. J. Anim. Sci. 76:2255-2262.
  18. Rohrer, G. A. 2000. Identification of quantitative trait loci affecting birth characters and accumulation of back fat and weight in Meishan-White Composit resource population. J. Anim. Sci. 78:2547-2553.
  19. Seo, K. S., S. H. Kim and Y. I. Park. 1996. Estimation of genetic parameters for test number in swine. Kor. J. Anim. Sci. 38(2) 133-138.
  20. Soller, M. 1994. Marker-assisted selection, an overview. Anim. Biotech. 5:193-208.
  21. Wada, Y., T. Akita, T. Awata, T. Furukawa, N. Sugai, Y. Inage, K. Ishii, Y. Ito, E. Kobayashi, H. Kusumoto, T. Matsumoto, S. Mikawa, M. Miyake, A. Murase, S. Shimanuki, T. Sugiyama, Y. Uchida, S. Yanai and H. Yasue. 2000. Quantitative trait loci (QTL) analysis in a Meishan${\times}$Gottingen cross population. Anim. Genet. 31:376-384.
  22. Wilkie, P. J., A. A. Paszek, C. W. Beattie, L. J. Alexander, M. B. Wheeler and L. B. Schook. 1999. A genomic scan of porcine reproductive traits reveals possible quantitative trait loci (QTLs) for number of corpora lutea. Mamm. Genome. 10:573-578.

Cited by

  1. Phylogeography and environmental correlates of a cap on reproduction: teat number in a small marsupial, Antechinus agilis vol.16, pp.5, 2007, https://doi.org/10.1111/j.1365-294X.2006.03209.x
  2. Identification of SNPs Affecting Porcine Carcass Weight with the 60K SNP Chip vol.55, pp.4, 2013, https://doi.org/10.5187/JAST.2013.55.4.231
  3. Evaluation of a Fine-mapping Method Exploiting Linkage Disequilibrium in Livestock Populations: Simulation Study vol.19, pp.12, 2006, https://doi.org/10.5713/ajas.2006.1702