DOI QR코드

DOI QR Code

Chemical Genomics and Medicinal Systems Biology: Chemical Control of Genomic Networks in Human Systems Biology for Innovative Medicine

  • Kim, Tae-Kook (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Institute of Chemistry and Cell Biology-Initiative for Chemical Genomics, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School)
  • Published : 2004.01.31

Abstract

With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological challenges, especially those in human diseases, should be addressed in human cells in which conventional (e.g. genetic) approaches have been extremely difficult to implement. To overcome this, several approaches have been initiated. This review will focus on the development of a novel 'chemical genetic/genomic approach' that uses small molecules to 'probe and identify' the function of genes in specific biological processes or pathways in human cells. Due to the close relationship of small molecules with drugs, these systematic and integrative studies will lead to the 'medicinal systems biology approach' which is critical to 'formulate and modulate' complex biological (disease) networks by small molecules (drugs) in human bio-systems.

Keywords

References

  1. Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D. and Julius, D. (1999) The capsaicin receptor: a heat-activated ion channel in pain pathway. Nature 389, 816-824.
  2. Clemons, P. A., Koehler, A. N., Wagner, B. K., Sprigings, T. G., Spring, D. R., King, R. W., Schreiber, S. L. and Foley, M. A. (2001) A one-bead, one-stock solution approach to chemical genetics. Chem. Biol. 8, 1183-1195. https://doi.org/10.1016/S1074-5521(01)00086-2
  3. Giaever, G., Shoemaker, D. D., Jones, T. W., Liang, H., Winzeler, E. A., Astromoff, A. and Davis, R. W. (1999) Genomic profiling of drug sensitivities via induced hapoinsufficiency. Nat. Genet. 21, 278-283. https://doi.org/10.1038/6791
  4. Harding, M. W., Galat, A., Uehling, D. E. and Schreiber, S. L. (1989) A receptor for the immunosuppressant FK506 is a cistrans peptidyl-prolyl isomerase. Nature 341, 758-760. https://doi.org/10.1038/341758a0
  5. Hergenrother, P. J., Depew, K. M. and Schreiber, S. L. (2000) Small Molecule Microarrays: Covalent Attachment and Screening of Alcohol-Containing Small Molecules on Glass Slides. J. Am. Chem. Soc. 122, 7849-7850. https://doi.org/10.1021/ja0014032
  6. Kim, T. K. (2000) Chemical genetics and chemical genomics: high throughput discovery of drugs and disease genes. Mol. Biol. News 1, 30-32.
  7. King, R. W. (1999) Chemistry or biology: which comes first after the genome is sequenced? Chem. Biol. 6, R327-R333. https://doi.org/10.1016/S1074-5521(00)80002-2
  8. Komarov, P. G., Komarova, E. A., Kondratov, R. V., Christov-Tselkov, K., Coon, J. S., Chernov, M. V. and Gudkov, A. V. (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733-1737. https://doi.org/10.1126/science.285.5434.1733
  9. Kuruvilla, F. G., Shamji, A. F., Sternson, S. M., Hergenrother, P. J. and Schreiber, S. L. (2002) Dissection of a glucose-sensitive pathway of the nutrient-response network using diversityoriented synthesis and small molecule microarrays. Nature 416, 653-656. https://doi.org/10.1038/416653a
  10. Launhardt, H., Hinnen, A. and Munder, T. (1998) Drug-induced phenotypes provide a tool for the functional analysis of yeast genes. Yeast 14, 935-942. https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<935::AID-YEA289>3.0.CO;2-9
  11. MacBeath, G. and Schreiber, S. L. (2000) Printing Proteins as Microarrays for High Throughput Function Determination. Science 289, 1760-1762.
  12. Marton, M. J., DeRisi, J. L., Bennett, H. A., Iyer, V. R., Meyer, M. R., Roberts, C. J., Stoughton, R., Burchard, J., Slade, D., Dai, H., Bassett, D. E. Jr., Hartwell, L. H., Brown, P. O. and Friend, S. H. (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat. Med. 11, 1293-1301.
  13. Mayer, T. U., Kappor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. and Mitichison, T. (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotypebased screen. Science 286, 971-974. https://doi.org/10.1126/science.286.5441.971
  14. Rosania, G. R., Chang, Y. -T., Perez, O., Sutherlin, D., Dong, H., Lockhart, D. J. and Schultz, P. G. (2000) Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat. Biotech. 18, 304-308. https://doi.org/10.1038/73753
  15. Schreiber, S. L. (1998) Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg. Med. Chem. 6, 1127-1152. https://doi.org/10.1016/S0968-0896(98)00126-6
  16. Schreiber, S. L. (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964-1969. https://doi.org/10.1126/science.287.5460.1964
  17. Strausberg, R. and Schreiber, S. (2003) From Knowing to Controlling: A Path from Genomics to Drugs Using Small Molecule Probes. Science 300, 294-295. https://doi.org/10.1126/science.1083395
  18. Swedlow, J., Goldberg, I., Brauner, E. and Sorger, P. (2003) Informatics and Quantitative Analysis in Biological Imaging. Science 300, 100-102. https://doi.org/10.1126/science.1082602
  19. Tanaka, A. S., Sliva, M. M., Torquato, R. J., Noguti, M. A., Sampaio, C. A., Friz, H. and Auerswald, E. A. (1999) Functional phage display of leech-derived tryptase inhibitor (LDTI): construction of a library and selection of thrombin inhibitors. FEBS Lett. 458, 11-16. https://doi.org/10.1016/S0014-5793(99)01106-0
  20. Tian, S. S., Lamb, P., King, A. G., Miller, S. G., Kessler, L., Luengo, J. I., Averill, L., Johnson, R. K., Gleason, J. G., Pelus, L. M., Dillon, S. B. and Rosen, J. (1998) A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor. Science 281, 257-259. https://doi.org/10.1126/science.281.5374.257
  21. Yarrow, J., Feng, Y., Perlman, Z., Kirchhausen, T. and Mitchison, T. (2003) Phenotypic screening of small molecule libraries by high throughput cell imaging. Comb. Chem. High Throughput Screen. 6, 79-99. https://doi.org/10.2174/1386207033329850
  22. Walling, L. A., Peters, N., Horn, E. J. and King, R. W. (2001) New technologies for chemical genetics. J. Cell. Biochem. Suppl. 37, 7-12.

Cited by

  1. Chemogenomics approaches to novel target discovery vol.4, pp.3, 2007, https://doi.org/10.1586/14789450.4.3.411
  2. Chemical genetics: toward the next generation of molecular medicines vol.5, pp.7, 2004, https://doi.org/10.1517/14622416.5.7.757
  3. Chemoproteomics-driven drug discovery: addressing high attrition rates vol.11, pp.11-12, 2006, https://doi.org/10.1016/j.drudis.2006.04.014