DOI QR코드

DOI QR Code

Purification and Characterization of Six Fibrinolytic Serine-Proteases from Earthworm Lumbricus rubellus

  • Cho, Il-Hwan (Department of Biological Sciences, Konkuk University) ;
  • Choi, Eui-Sung (Lab of Microbial Functions, Korea Research Institute of BioSciences and Biotechnology) ;
  • Lim, Hun-Gil (College of Medicine, Hanyang University) ;
  • Lee, Hyung-Hoan (Department of Biological Sciences, Konkuk University)
  • Published : 2004.03.31

Abstract

The six lumbrokinase fractions (F1 to F6) with fibrinolytic activities were purified from earthworm Lumbricus rubellus lysates using the procedures of autolysis, ammonium sulfate fractionation, and column chromatography. The proteolytic activities on the casein substrate of the six iso-enzymes ranged from 11.3 to 167.5 unit/mg with the rank activity orders of F2 > F1 > F5 > F6 > F3 > F4. The fibrinolytic activities of the six fractions on the fibrin plates ranged from 20.8 to 207.2 unit/mg with rank orders of F6 > F2 > F5 > F3 > F1 > F4. The molecular weights of each iso-enzyme, as estimated by SDS-PAGE, were 24.6 (F1), 26.8 (F2), 28.2 (F3), 25.4 (F4), 33.1 (F5), and 33.0 kDa (F6), respectively. The plasminogen was activated into plasmin by the enzymes. The optimal temperature of the six iso-enzymes was $50^{\circ}C$, and the optimal pH ranged from pH 4-12. The four iso-enzymes (F1-F4) were completely inhibited by PMSF. The two enzymes (F5 and F6) were completely inhibited by aprotinin, TLCK, TPCK, SBTI, LBTI, and leupeptin. The N-terminal amino acid (aa) sequences of the first 20 to 22 residues of each fraction had high homology. All six isoenzymes had identical aa residues 2-3 and 13-15. The N-terminal 21-22 aa sequences of the F2, F3, and F4 isoenzymes were almost the same. The N-terminal aa sequences of F5 and F6 were identical.

Keywords

References

  1. Astrup, T. and Mullertz, S. (1952) The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophy. 40, 346-351. https://doi.org/10.1016/0003-9861(52)90121-5
  2. Cho, S. Y., Hahn, B. S. and Kim, Y. S. (1999) Purification and characterization of a novel seine protease with fibrinolytic activity from Tenodera sinensis (Chinese mantis) egg cases. J. Biochem. Mol. Biol. 32, 579-584.
  3. Choi, N. S., Kim, B. Y., Lee, J. Y., Yoon, K. S., Han, K. Y. and Kim, S. H. (2002) Relationship between acrylamide concentration and enzymatic activity in an improved single fibrin zymogram gel system. J. Biochem. Mol. Biol. 35, 236-238. https://doi.org/10.5483/BMBRep.2002.35.2.236
  4. Choi, N. S. and Kim, S. H. (2001) The effect of sodium chloride on the serine-type fibrinolytic enzymes and the thermostability of extracellular protease from Bacillus amyloliquefaciens DJ-4. J. Biochem. Mol. Biol. 34, 134-138.
  5. Jeon, O. H., Moon, W. J. and Kim, D. S. (1995) An anticoagulant/fibrinolytic protease from Lumbricus rubellus. J. Biochem. Mol. Biol. 28, 138-1452.
  6. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  7. Lee, S. K., Bae, D. H., Kwon, T. J., Lee, S. B., Lee, H. H., Park, J. H., Heo, S. and Johnson, M. G. (2001) Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J. Microbiol. Biotechnol. 11, 845-852.
  8. Mihara, H., Sumi, H., Yoneta, T., Mizumoto, H., Ikeda, R., Seikl, M. and Maruyama, M. (1991) A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn. J. Physiol. 41, 461-472. https://doi.org/10.2170/jjphysiol.41.461
  9. Mihara, H., Yineta, T., Sumi, H., Soeda, M. and Maruyama, M. (1989) A possibility of earthworm powder as therapeutic agent for thrombosis. Thromb. Haemosta. 62, 545-549.
  10. Mihara, H., Nakajima, N. and Sumi, H. (1993) Characterization of protein fibrinolytic enzyme in earthworm, Lumbricus rubellus. Biosci. Biotech. Biochem. 57, 1726-1731. https://doi.org/10.1271/bbb.57.1726
  11. Nakajima, N., Mihara, H. and Sumi, H. (1993) Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Biosci. Biotech. Biochem. 57, 1726-1730. https://doi.org/10.1271/bbb.57.1726
  12. Park, Y., Ryu, E., Kim, H., Jeong, J., Kim, J., Shim, J., Jeon, S., Jo, Y., Kim, W. and Min, B. (1999a) Characterization of antithrombotic activity of lumbrokinase-immobilized polyurethane valves in the total artificial heart. Artif. Organs. 23, 210-214. https://doi.org/10.1046/j.1525-1594.1999.06013.x
  13. Park, S. Y., Kye, K. C., Lee, M. H., Sumi, H. and Mihara, I. (1989) Fibrinolytic activity of the earthworm extract. Thromb. Haemosta. 62, 545-550.
  14. Park, Y. S., Cha, M. H., Yong, W. M., Kim, H. J., Chung, I. Y. and Lee, Y. S. (1999b) The purification and characterization of Bacillus subtilis tripeptidase (pepT). J. Biochem. Mol. Biol. 32, 239-246.
  15. Robbins, K. C. and Summaria, L. (1976) Plasminogen and plasmin. Methods Enzymol. 45, 257-273. https://doi.org/10.1016/S0076-6879(76)45025-5
  16. Ryu, G. H., Han, D. K., Park, S. Y., Kim, M., Kim, Y. H. and Min, B. G. (1995) Surface characteristics and properties of lumbrokinase-immobilized polyurethane. J. Biomed. Mater. Res. 29, 403-409. https://doi.org/10.1002/jbm.820290315
  17. Ryu, G. H., Park, S., Kim, M., Han, D. K., Kim, Y. H. and Min, B. G. (1994) Antithrombogenicity of lumbrokinase immobilized polyurethane. J. Biomed. Mater. Res. 28, 1069-1077. https://doi.org/10.1002/jbm.820280912
  18. Scopes, R. K. (1987) Protein purification. Springer-Verlag Inc., New York, USA.

Cited by

  1. A novel alkaline serine protease with fibrinolytic activity from the polychaete, Neanthes japonica vol.159, pp.1, 2011, https://doi.org/10.1016/j.cbpb.2011.01.004
  2. Eisenia fetida Protease-III-1 Functions in Both Fibrinolysis and Fibrogenesis vol.2007, 2007, https://doi.org/10.1155/2007/97654
  3. Characterization of serine proteases ofLumbriculus variegatusand their role in regeneration vol.131, pp.4, 2012, https://doi.org/10.1111/ivb.12002
  4. Porous gelatin/tricalcium phosphate/genipin composites containing lumbrokinase for bone repair vol.78, 2015, https://doi.org/10.1016/j.bone.2015.04.034
  5. Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential vol.48, pp.4, 2016, https://doi.org/10.1007/s00726-015-2162-3
  6. Hemostatic and toxinological diversities in venom of Micrurus tener tener, Micrurus fulvius fulvius and Micrurus isozonus coral snakes vol.58, pp.1, 2011, https://doi.org/10.1016/j.toxicon.2011.04.020
  7. Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB vol.74, pp.2, 2007, https://doi.org/10.1007/s00253-006-0621-1
  8. Purification and characterization of three thermostable alkaline fibrinolytic serine proteases from the polychaete Cirriformia tentaculata vol.48, pp.5-6, 2013, https://doi.org/10.1016/j.procbio.2013.03.017
  9. Purification and characterization of novel fibrinolytic proteases as potential antithrombotic agents from earthworm Perionyx excavatus vol.1, pp.1, 2011, https://doi.org/10.1186/2191-0855-1-26
  10. Antithrombotic effects by oral administration of novel proteinase fraction from earthworm eisenia andrei on venous thrombosis model in rats vol.30, pp.4, 2007, https://doi.org/10.1007/BF02980222
  11. DLBS1033, A Protein Extract fromLumbricus rubellus, Possesses Antithrombotic and Thrombolytic Activities vol.2011, 2011, https://doi.org/10.1155/2011/519652
  12. Comparative proteomic analysis of the sun- and freeze-dried earthworm Eisenia fetida with differentially thrombolytic activities vol.83, 2013, https://doi.org/10.1016/j.jprot.2013.02.028
  13. Improved Peripheral Nerve Regeneration in Streptozotocin-Induced Diabetic Rats by Oral Lumbrokinase vol.43, pp.02, 2015, https://doi.org/10.1142/S0192415X15500147
  14. A novel anti-plant viral protein from coelomic fluid of the earthworm Eisenia foetida: Purification, characterization and its identification as a serine protease vol.151, pp.4, 2008, https://doi.org/10.1016/j.cbpb.2008.08.005
  15. Lumbrokinase attenuates diabetic nephropathy through regulating extracellular matrix degradation in Streptozotocin-induced diabetic rats vol.100, pp.1, 2013, https://doi.org/10.1016/j.diabres.2013.01.012
  16. In situ localization and substrate specificity of earthworm protease-II and protease-III-1 from Eisenia fetida vol.40, pp.2, 2007, https://doi.org/10.1016/j.ijbiomac.2006.05.007
  17. Mechanisms of lumbrokinase in protection of cerebral ischemia vol.590, pp.1-3, 2008, https://doi.org/10.1016/j.ejphar.2008.05.037
  18. Earthworm (Pheretima aspergillum) extract stimulates osteoblast activity and inhibits osteoclast differentiation vol.14, pp.1, 2014, https://doi.org/10.1186/1472-6882-14-440
  19. Discreplasminin, a plasmin inhibitor isolated from Tityus discrepans scorpion venom vol.83, pp.7, 2009, https://doi.org/10.1007/s00204-008-0377-8
  20. Antithrombotic effects of a newly purified fibrinolytic protease from Urechis unicinctus vol.132, pp.2, 2013, https://doi.org/10.1016/j.thromres.2013.07.001
  21. Starase: A bi-functional fibrinolytic protease from hepatic caeca of Asterina pectinifera displays antithrombotic potential vol.105, 2014, https://doi.org/10.1016/j.biochi.2014.06.012
  22. Statistical media optimization for enhanced production of fibrinolytic enzyme from newly isolated Proteus penneri SP-20 vol.4, pp.3, 2015, https://doi.org/10.1016/j.bcab.2015.05.006
  23. Improved Myocardial Perfusion in Stable Angina Pectoris by Oral Lumbrokinase: A Pilot Study vol.15, pp.5, 2009, https://doi.org/10.1089/acm.2008.0506
  24. Intestinal Absorption of Fibrinolytic and Proteolytic Lumbrokinase Extracted from Earthworm, Eisenia andrei vol.14, pp.2, 2010, https://doi.org/10.4196/kjpp.2010.14.2.71
  25. Glycosylated trypsin-like proteases from earthworm Eisenia fetida vol.40, pp.5, 2007, https://doi.org/10.1016/j.ijbiomac.2006.10.001
  26. Purification and characterization of a new serine protease (EF-SP2) with anti-plant viral activity from Eisenia foetida: Analysis of anti-plant viral activity of EF-SP2 vol.46, pp.9, 2011, https://doi.org/10.1016/j.procbio.2011.05.009
  27. Purification and Characterization of a New Serine Protease with Fibrinolytic Activity from the Marine Invertebrate, Urechis unicinctus vol.170, pp.3, 2013, https://doi.org/10.1007/s12010-013-0168-4
  28. Lumbrokinase from earthworm extract ameliorates second-hand smoke-induced cardiac fibrosis vol.30, pp.10, 2015, https://doi.org/10.1002/tox.21993
  29. Mechanisms of Nattokinase in protection of cerebral ischemia vol.745, 2014, https://doi.org/10.1016/j.ejphar.2014.10.024
  30. Cloning, expression and activity analysis of a novel fibrinolytic serine protease from Arenicola cristata vol.14, pp.3, 2015, https://doi.org/10.1007/s11802-015-2488-1
  31. Herbs for Atrial Fibrillation vol.23, pp.3, 2017, https://doi.org/10.1089/act.2017.29114.eya
  32. Sirt1 Activation by Post-ischemic Treatment With Lumbrokinase Protects Against Myocardial Ischemia-Reperfusion Injury vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00636