Understanding the protox inhibition activity of novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives using comparative molecular field analysis (CoMFA) methodology

비교 분자장 분석 (CoMFA) 방법에 따른 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluoro-benzene 유도체들의 Protox 저해 활성에 관한 이해

  • Sung, Nack-Do (Division of Applied Biologiy and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Song, Jong-Hwan (Cytosine Laboratory, Korea Research Institute of Chemical Technology) ;
  • Yang, Sook-Young (Division of Applied Biologiy and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Park, Kyeng-Yong (Division of Applied Biologiy and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 송종환 (한국화학연구원 세포화학연구팀) ;
  • 양숙영 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 박경용 (충남대학교 농업생명과학대학 응용생물화학부)
  • Published : 2004.09.30

Abstract

Three dimensional quantitative structure-activity relationships (3D-QSAR) studies for the protox inhibition activities against root and shoot of rice plant (Orysa sativa L.) and barnyardgrass (Echinochloa crus-galli) by a series of new A=3,4,5,6-tetrahydrophthalimino, B=3-chloro-4,5,6,7-tetrahydro-2H-indazolyl and C=3,4-dimethylmaleimino group, and R-group substituted on the phenyl ring in 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2chloro-4-fluorobenzene derivatives were performed using comparative molecular field analyses (CoMFA) methodology with Gasteiger-Huckel charge. Four CoMFA models for the protox inhibition activities against root and shoot of the two plants were generated using 46 molecules as training set and the predictive ability of the each models was evaluated against a test set of 8 molecules. And the statistical results of these models with combination (SIH) of standard field, indicator field and H-bond field showed the best predictability of the protox inhibition activities based on the cross-validated value $r^2_{cv.}$ $(q^2=0.635\sim0.924)$, conventional coefficient $(r^2_{ncv.}=0.928\sim0.977)$ and PRESS value $(0.091\sim0.156)$, respectively. The activities exhibited a strong correlation with steric $(74.3\sim87.4%)$, electrostatic $(10.10\sim18.5%)$ and hydrophobic $(1.10\sim8.30%)$ factors of the molecules. The steric feature of molecule may be an important factor for the activities. We founded that an novel selective and higher protox inhibitors between the two plants may be designed by modification of X-subsitutents for barnyardgrass based upon the results obtained from CoMFA analyses.

새로운 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene 유도체들의 phenyl 고리에 R-치환기와 치환기가 도입된 A=3,4,5,6-tetrahyophthalimino, B=3-chloro-4,5,6,7-tetrahydro-2H-indazolyl 및 C=3,4-dimethylmaleimino 치환체들에 의한 벼(Orysa sativa L.)와 논피 (Echinochloa crus-galli) 뿌리와 줄기 부위의 살초활성에 관한 3차원 구조-활성관계(3D-QSAR)를 Gasteiger-Huckel 전하를 사용하여 비교 분자장 분석(CoMFA) 방법으로 연구하였다. 두 초종의 뿌리와 줄기의 살초 활성에 대한 4개의 CoMFA 모델들은 46개 화합물로 구성된 training set로부터 유도되었으며 각 모델들은 8개 화합물의 각 test set에 의하여 예측성이 평가되었다. Standard field, indicator field 및 H-bond field를 조합한 조건(SIH)에서 유도된 모델들의 통계결과는 cross-validated $r^2_{cv.}$$(q^2=0.635\sim0.924)$과 non cross-validated, $r^2_{ncv}$ $(0.928\sim0.977)$값 그리고 PRESS 값$(0.091\sim0.156)$에 근거하여 매우 양호한 예측성을 나타내었다. 그리고 살초 활성은 분자의 입체장$(74.3\sim87.4%)$, 정전기장$(10.10\sim18.5%)$ 및 소수성장$(1.10\sim8.30%)$과 높은 상관성을 보였으며 입체장이 살초 활성에 가장 중요한 요소이었다. 이같은 CoMFA 분석 결과로부터, 이종 간 선택적이며 고 활성의 protox 저해제들이 X-치환기의 수식에 의하여 설계될 수 있을 것임을 알았다.

Keywords

References

  1. Raichurkar, A. V. and V. M. Kulkarni (2003) Understanding the antitumor activity of novel hydroxysemicarbazide derivatives as ribonucleotide reductase inhibitors using CoMFA and CoMSIA, J. Med. Chem. 46:4419-4427.
  2. Fujita, T. (2002) Similarities in bioanalogous structural transformation patterns, Ch. 15, In Agrochemical Discovery, Insect, Weed, and Fungal control (ed Baker, D. R. and N. K. Umetsu) ACS Symposium Series No. 774., American Chemical Society, Washington, DC
  3. HRAC (2002) Publications, Classification of Herbicides according to Mode of Action, Herbicide Resistance Action Committee,/Plant protection. Org./HRAC
  4. Hasegawa, K., Arakawa, M. and Funatsu, K. (1999) Rational choice of bioactive conformations through use of conformation analysis and 3-way partial least squares modeling. Chemometrics and Intelligent Laboratory Systems 50:253-261
  5. John K. Buolamwini and H. Assefa (2002) CoMFA and CoMSIA 3D QSAR and docking studies on conformaionally-restrained cinnamoy1 HIV-1 integrase inhibitors: Exploration of a binding mode at the active site. J. Med. Chem. 45:841-852.
  6. Kerr, R. et al., (1994) Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics, Biophys. J. 67: 1501-1515
  7. Kubinyi, H. (1993) 3D QSAR Drug Design, Theory, Methos and Applications, ESCOM. Leiden
  8. Marshall, G. R., C. D. Barry, H. E. Bosshard, R. A. Dammkoehler, D. A. Dunn (1979) The conformational parameter in drug design: active analog approach. pp.205-226, In Computer-assisted drug design (ed Olsen, E. C. and R. E. Christoffersen). Ammerican Chemical Society, Washington, D.C.
  9. Pallett, K. E. (1997) Herbicide target sites, recent trends and new challenges. Proceeding of Brighton Crop Protection Conference-Weeds 575-578
  10. Stahle, L. and S. Wold (1988) Multivariate data analysis and experimental design in biomedical research, Progr. Med. Chem. 25:292-334
  11. Tanaka, S., M. Takahashi, Y. Funaki, K. Izumi, H. Takano and Miyakado (1995) Hydrophobicity and Systemic Activities, of Fungicidal Triazoles and Blaching Herbicidal Compounds, Ch. 8., pp.108-119, In Classical and Three-Dimensional QSAR in Agrochemistry (ed Hansch, C. and T. Fujita), ACS Symposium Series No. 606, American Chemical Society, Washington, D.C., USA
  12. Theodoridis, G., J. T. Bahr, F. W. Hotzman, S. Sehgel and D. P. Suarez (2000) New geration of protoxinhibiting herbicides, Crop Protection 19: 533- 535
  13. Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO 63144-2913, U.S.A., http://www.tripos.com/Bookshelf/qsar/
  14. Wold, S., Albano, C., Dunn, W.J., Edlund, U., Esbensen, K., Geladi, P., Hellberg, S., Johanasson, E., Lindberg, W. and Sjostrom, M. (1984) Multivariate Data Analysis in Chemistry, pp. 17-94., In Chemo- metrics: Mathematics and Statistics in Chemistry (ed Kowalski, B. R.) Reidel, Dordrecht, Nethelands
  15. 송종환 (2002) 광역동 살초성 5-Isoxazolinylmethyloxy- 치환 cyclic imide 유도체의 정량적인 구조와 활성과의 관계, 충남대학교 대학원 박사학위 논문
  16. 성낙도 (2002) 정량적인 구조활성 상관(QSAR) 기법에 의한 새로운 농약의 개발, II 자유 에너지 직선관계(LFER)와 설명인자들., 한국농약과학회지, 6(4): 231-243
  17. 성낙도, 송선섭 (2003a) 제초제의 활성성분에 대한 물리-화학 파라미터의 범위, 한국농약과학회지 7(1):58-65
  18. 성낙도, 옥환석, 송종환, 이용구 (2003b) N-치환 phenyl-3,4,5,6-tetrahydrophthalimide 와 N-치환 phenyl-3,4-dimethylmaleimide 유도체들의 생장 저해활성에 관한 비교 분자장 분석(CoMFA), 한국농약과학회지 7(2):75-82
  19. 성낙도, 옥환석, 정헌준, 송종환 (2003c) 제초성 N-치환 phenyl-3,4-dimethylmaleimide 유도체의 정량적인 구조-활성관계와 분자 유사성, 한국농약과학회지 7(2):100-107
  20. 양숙영 (2001) N-5-(isoxazolinemethoxyphneyl)-3,4-dimethylpyrrol-2,5-dione 유도체의 제초활성에 관한 2D 및 3D 구조-활성관계의 분석, 충남대학교 대학원 석사학위 논문