Characterization of Crazing Behavior in Polystyrene

Polystyrene 의 Crazing 거동 특성

  • 전대진 (금호타이어 기술연구소) ;
  • 김석호 (금호타이어 기술연구소) ;
  • 김완영 (전북대학교 화학공학과)
  • Published : 2004.06.30

Abstract

Tensile tests of two types of injection-molded polystyrene(PS) samples have been carried out over a wide range of temperature and strain rates in order to characterize their crazing behaviors. Mechanical properties were affected by the formation of crazes as well as test variables. Below the brittle-ductile transition temperature, the tensile stress and the ultimate elongation increased with the molecular weight, strain rate, and with decreasing temperature while the number and average length of crazes also increase. The crazing stress increased with molecular weight, strain rate, and with decreasing temperature. However, the dependence was small compared to the tensile stress. The gap between crazing stress and tensile stress which represents time fur craze formation and growth increased with molecular weight, strain rate, and with decreasing temperature. Crazing was activated near the ${\beta}$-relaxation temperature; crazing stress abruptly decreased at this temperature. During the tensile test, the craze density changed exponentially with the applied stress. At the initial stage, crazes formed slowly. Once a certain number of craze formed, however, the craze density increased rapidly. Craze nucleation and growth occur simultaneously.

서로 다른 두 종류의 폴리스타일렌(PS)을 injection 기계를 이용하여 인장 시편을 만들고, 온도와 인장 속도에 따른 crazing 거동 특성을 연구하기 위하여 다양한 시험을 하였다. 기계적물성은 craze 형성뿐만 아니라 다양한 시험 변수에 의해 영향을 받으며, brittle-ductile transition 이하의 온도에서의 인장 응력 및 최대 신율은 분자량, 인장 속도의 증가 및 온도의 감소에 따라 증가하며 craze의 수와 평균 길이 또한 증가한다. Crazing 응력도 동일한 형태로 증가함을 보여준다. 그러나, 이러한 특성은 인장 강도에 미치는 영향과 비교했을 때 보다 의존도는 상대적으로 낮다. Craze 형성과 성장에 필요한 시간으로 설명할 수 있는 crazing 응력과 인장 응력간의 차이는 분자량, 인장 속도에 따라 비례적으로 그리고, 온도가 감소함에 따라 증가함을 보여 준다. Crazing 은 ${\beta}$-relaxation 온도 근처에서 활성화된다. 이 온도에서는 crazing 응력이 급격하게 감소함을 나타낸다. 인장 평가시 craze 밀도가 적용된 응력에 따라 기하 급수적으로 증가되는데, 개시 단계에서는 craze는 서서히 형성되며, 일단 일정한 수만큼의 craze가 형성이 되면 craze 밀도가 급속도로 증가했다.

Keywords

References

  1. R. P. Kambour, 'A Review of Crazing and Fracture in Thermoplastics', Macromol. Rev., 7, 1(1973). https://doi.org/10.1002/pol.1973.230070101
  2. E. J. Kramer, 'Microscopic and Molecular Fundamentals of Crazing' in 'Advances in polymer Science', H. H. Kausch Ed., VoI.52/53, Springer-Verlage, Berlin (1983)
  3. R. P. Kambour, Crazing. in 'Encyclopedia of Polymer Science and Engineering' J. I. Krischwitz Ed., 2nd Ed., Vol.4, John Wiley & Sons, N. Y. (1985)
  4. E. J. Kramer and L. L. Berger, 'Fundamental Processes of Craze Growth and Fracture. in 'Advances in Polymer Science', H. H. Kausch Ed., VoI.91/92, Springer-Verlage, Berlin (1990)
  5. J. Murry and D. Hull, 'Nucleation and Propagation of Cracks in Polystyrene', Polymer, 10, 451 (1969) https://doi.org/10.1016/0032-3861(69)90054-8
  6. J. Murry and D. Hull, 'Fracture Surface of Polystyrene: Mackerel Pattern', J. Polym. Sci., 8, 583 (1970) https://doi.org/10.1002/pol.1952.120080602
  7. B. D. Lauterwasser and E. J. Kramer, 'Microscopic Mechanisms and Mechanics of Craze Growth and Fracture', Phil. Mag., 39(4), 469 (1979) https://doi.org/10.1080/01418617908239285
  8. J. Hoare and D. Hull, 'The Effect of Temperature on the Deformation and Fracture of Polystyrene', J. Mater. Sci., 10, 1861 (1975) https://doi.org/10.1007/BF00754474
  9. J. Hoare and D. Hull, 'Craze yielding and Stress-Strain Characteristics of Crazes in Polystyrene', Phil. Mag., 26, 443 (1972) https://doi.org/10.1080/14786437208227440
  10. R. N. Haward. B. M. Murphy, and E. F. T. White, 'Relationship between Compressive Yield and Tensile Behavior in Glassy Thermoplastics', J. Polym. Sci., A-2, 9, 801 (1971) https://doi.org/10.1002/pol.1971.160090503
  11. K. Matsushige, S. V. Radcliff, and E. Baer, 'Relationship Between Compressive Yield and Tensile Behavior in Glassy Thermoplastics', J. Appli. Polym. Sci., 20, 1853 (1976) https://doi.org/10.1002/app.1976.070200714
  12. B. Wunderlich and D. M. Bodily, 'Dynamic Differential Thermal Analysis of the Glass Transition Interval', J. Polym. Sci., C, 6, 137 (1964)
  13. R. F. Boyer, 'Dependence of Mechanical Properties on Molecular Motion in Polymers', Polym. Eng. Sci., 8(3), 161 (1968) https://doi.org/10.1002/pen.760080302
  14. J. R. Martin, J. F. Johnson, and A. R. Cooper, 'Mechanical Properties of Polymers: The Influence of Molecular Weight and Molecular Weight Distribution', J. Macromol. Sci.-Revs. Macrmol. Chem., C8, 57 (1972)
  15. O. Inhai, 'Delayed Yielding of Epoxy Resin Under Tension, Compression, and Flexure. I. Behavior Under Constant Strain Rate', J. Polym. Sci., 11, 963 (1967)
  16. A. E. Moehlenpah, O. inhai, and A. T. Dibenedetto, 'The Effect of Time and Temperature on the Mechanical Behavior of a 'Plasticized' Epoxy Resin Under Different Loading Modes', J. Appl. Polym. Sci., 13, 1231(1969) https://doi.org/10.1002/app.1969.070130611
  17. J. E. Fellers and B. F. Kee, 'Crarzing Studies of Polystyrene. I. A. New Phenomenological Observation', J. Appli. Polym. Sci., 18, 2355(1974) https://doi.org/10.1002/app.1974.070180814
  18. N. Brown and X. Wang, 'Direct Measurements of the Strain on the Boundary of Crazes in Polyethylene. Polymer', 29, 463 (1988)
  19. G. H. Michler, 'Correlation Between Craze Formation and Mechanical Behavior of Amorphous Polymers', J. Mater. Sci., 25, 2321 (1990) https://doi.org/10.1007/BF00638022