3-Methylthiophene이 함유된 폴리우레탄 필름의 전기적 특성 연구

Electrical Properties and Characterization of 3-Methylthiophene Impregnated Polyurethane films

  • 발행 : 2004.09.30

초록

본 연구에서는 poly(propylene glycol) (PPG), toluene 2,4-diisocyanate, 3-methylthiophene (3-MT)으로부터 반응시간, $FeCl_3$의 농도, 3-MT와 PU의 무게비, 반응온도 등의 다양한 조건에 따라 전도성 폴리우레탄 필름을 제조하였다. $FeCl_3$와 ethyl acetate로 구성된 유기용매에 제조한 필름을 함침 시킨 결과 3-MT와 $FeCl_3$의 확산-산화 반응을 통해 급속한 전도성 PMT 층이 형성되었다. 전도성 복합체의 전기 전도도는 제조조건에 따라 많은 영향을 받고 SEM 분석과 접촉각 측정으로부터 반응시간과 반응온도가 모폴로지와 표면 자유에너지에 미치는 영향을 조사하였으며 제조된 복합체의 전도도는 최대 42 S/cm 인 것으로 확인되었다.

The elastomeric and conductive polyurethane (PU) films were prepared by poly(propylene glycol) (PPG), toluene 2,4-diisocyanate, 3-methylthiophene (3-MT) at various preparation conditions, such as the reaction time, the $FeCl_3$ concentration, the weight ratio of the 3-MT to PU and the reaction temperature for the diffusion-oxidative reaction. The conductive poly (3-methylthiophene) (PMT) layers via the diffusion-oxidative reaction of 3-MT and ferric chloride were formed by immersing the film in organic solution of $FeCl_3$/ethyl acetate. The preparation conditions greatly affected the electrical conductivity of the 3-MT/PU composite. The effects of the reaction time and temperature on morphology and surface free energy were investigated by scanning electron microscopy (SEM) analysis and contact angle measurement, respectively. The conductivity of the composite was as high as 42 S/cm.

키워드

참고문헌

  1. R. Menon, 'Handbook of Organic Conductive Molecules and Polymers', ed. by H. S. Nalwa, p.131, John Wiley & Sons, New York, 1997
  2. F. Faez, W. A. Gazotti, and M. A. Paoli, 'An elastomeric conductor based on polyaniline prepared by mechanical mixing', Polymer, 40, 5497 (1999) https://doi.org/10.1016/S0032-3861(98)00775-7
  3. J. Steiger, R. Schmechel and H. V. Seggern, 'Energetic trap distribution in organic semiconductors', Synthetic Metals, 129, 1 (2002) https://doi.org/10.1016/S0379-6779(02)00012-7
  4. J. Ding, W. E. Price, S. F. Ralph and G. G. Wallace, ' Electrochemical behaviour of poly-pyrrole/sulfated poly($\beta$-hydroxyether) composites', Synthetic Metals, 129, 67 (2002) https://doi.org/10.1016/S0379-6779(02)00035-8
  5. S. Yigit, J. Hacaloglu, U. Akbulut and L. Toppare, 'Conducting polymer composites of polythiophene with natural and synthetic rubbers', Synthetic Metals, 79, 11 (1996) https://doi.org/10.1016/0379-6779(96)80123-8
  6. L. Flandin, Y. Brechet and J. Y. Cavaillie, 'Electrically conductive polymer nanocomposites as deformation sensors', Composites Science and Technology, 61, 895 (2001) https://doi.org/10.1016/S0266-3538(00)00175-5
  7. K. Ding, Z. Jia, W. Ma, R. Tong and X. Wang, 'Polyaniline and polyaniline-thiokol rubber composite coatings for the corrosion protection of mild steel', Materials Chemistry and Physics, 76, 137 (2002). https://doi.org/10.1016/S0254-0584(01)00518-1
  8. M. D. Migahed, T. Fahmy, M. Ishra and A Barakat, 'Preparation, characterization, and electrical conductivity of polypyrrole composite films', Polymer Testing, 23, 361 (2004) https://doi.org/10.1016/S0142-9418(03)00101-6
  9. S. J. Park, M. K. Seo and H. B. Shim, 'Effect of fiber shapes on physical characteristics of non-circular carbon fibers-reinforced composites', Materials Sci. and Eng. A, 352, 34 (2003) https://doi.org/10.1016/S0921-5093(02)00463-X
  10. S. J. Park, in 'Interfacial Forces and Fields 'Theory and Applications', ed. by J. P. Hsu, pp.385-442, Marcel Dekker, New York, 1999