Flavonol Glycosides from the Aerial Parts of Aceriphyllum rossii and Their Antioxidant Activities

  • Han Jae-Taek (Eromlife R&D Center, Eromlife Ltd. Co.) ;
  • Bang Myun-Ho (Graduate School of Biotechnology & Plant Metabolism Research Center Kyung Hee University) ;
  • Chun Ock-Kyoung (Seoul Health & Environmental Research institute) ;
  • Kim Dae-Ok (Department of Food Science and Technologg Cornell University) ;
  • Lee Chang-Yong (Department of Food Science and Technologg Cornell University) ;
  • Baek Nam-In (Graduate School of Biotechnology & Plant Metabolism Research Center Kyung Hee University)
  • Published : 2004.04.01

Abstract

The methanol extract obtained from the aerial parts of Aceriphyllum rossii (Saxifragaceae) was fractionated into ethyl acetate (EtOAc), n-BuOH and $H_2O$ layers through solvent fractionation. Repeated silica gel column chromatography of EtOAc and n-BuOH layers afforded six flavonol glycosides. They were identified as kaempferol 3-O-$\beta$-D-glucopyranoside (astragalin, 1), quercetin 3-O-$\beta$-D-glucopyranoside (isoquercitrin, 2), kaempferol 3-O-$\alpha$-L-rhamnopyranosyl $(1{\to}6)-\beta$-D-glucopyranoside (3), quercetin 3-O$\alpha$-L-rharnnopyranosyl $(1{\to}6)-\beta$-D-qlucopyrano-side (rutin, 4), kaempferol 3-O-[$\alpha$-L-rharnnopyranosyl $(1{\to}4)-\alpha$-L-rhamnopyranosyl $(1{\to}6)-\beta$-D-glucopyranoside] (5) and quercetin 3-O-[$\alpha$-L-rhamnopyranosyl $(1{\to}4)\alpha$-L-rhamnopyranosyl $(1{\to}6)\beta$-D-glucopyranoside] (6) on the basis of several spectral data. The antioxidant activity of the six compounds was investigated using two free radicals such as the ABTS free radical and superoxide anion radical. Compound 1 exhibited the highest antioxidant activity in the ABTS $\{2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)\}$ radical scavenging method. 100 mg/L of compound 1 was equivalent to $72.1\pm1.4\;mg/L$ of vitamin C, and those of compounds 3 and 5 were equivalent to $62.7\pm0.5\;mg/L$ and $54.3\pm1.3\;mg/L$ of vitamin C, respectively. And in the superoxide anion radical scavenging method, compound 5 exhibited the highest activity with an $IC_{50}$ value of $17.6{\pm}0.3{\mu}M$. In addition, some physical and spectral data of the flavonoids were confirmed.

Keywords

References

  1. Arora, A., Nair, M. G., and Strasburg, G. M., Structure-activity relationships for antioxidant activities of a series of flvonoids in a liposomal system. Free Radic. Biol. Med., 24,1355-1363 (1998) https://doi.org/10.1016/S0891-5849(97)00458-9
  2. Beck, M. A. and Haberlein, H., Flavonol glycoside from Eschscholtzia califormica. Phytochemistry, 50, 329-332(1999) https://doi.org/10.1016/S0031-9422(98)00503-2
  3. Cao, G., Sofic, E., and Prior, R. L., Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med., 22, 749-760 (1997) https://doi.org/10.1016/S0891-5849(96)00351-6
  4. Carini, R., Poli, G., Diazini, M. U., Maddix, S. P, Slater,T. F., and Cheesman K. H., Comparative evaluation of the antioxidant activity of $\alpha$-tocopherol, $\alpha$-tocopherol polyethyleneglycol 1000 succinate and $\alpha$-tocopherol succinate in isolated hepatocytes and liver microsomal suspensions. Biochem. Pharmacol., 39, 1597-1601 (1990) https://doi.org/10.1016/0006-2952(90)90526-Q
  5. Choi, W. H., Park, W. Y., Hwang, B. Y., Oh, G. -J., Kang, S. J., Lee, K. S., and Ro, J. S., Phenolic compounds from the stem bark of Comus walteri Wagner. Kor. J. Pharmacog., 29(3), 217-224 (1998)
  6. Cholbi, M. R., Paya, M., and Alcaraz, M. J., Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia, 47, 195-199 (1991). https://doi.org/10.1007/BF01945426
  7. Donovan, J. L., Meyer, A. S., and Waterhouse, A. L., Phenolic composition and antioxidant activity of prunes and prune juice (Prunus domestica). J. Agric. Food Chem., 1247-1252 (1998)
  8. Duthie, S. J., Collins, G. G., and Dobson, V. L., Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidized pyrimidines) in human lymphocytes. Mutation Research, 393, 223-231(1997) https://doi.org/10.1016/S1383-5718(97)00107-1
  9. Gey, K. F., Prospects for the prevention of free radical disease, regarding cancer and cardiovascular disease. British Med. Bull., 49, 679-699 (1993) https://doi.org/10.1093/oxfordjournals.bmb.a072640
  10. Han, J. T., Kim, H. Y, Park, Y. D., Lee, Y. H., Lee, K. R., Kwon, B. M., and Baek, N. I., Aceriphyllic acid A, a new ACAT inhibitory triterpenoid, from Aceriphyllum rossii. Planta Medica, 68, 558-561 (2002) https://doi.org/10.1055/s-2002-32565
  11. Ho, H. M., Chen, R. Y, Leung, L. K., Cen, F. L., Huang, Y. and Chen, Z.-Y, Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomed. Pharmacother., 56, 289-295 (2002)
  12. Jung, H. A., Kim, A. R., Chung, H. Y, and Choi, T. S., In vitro antioxidant activity of some selected prunus species in Korea. Arch. Pharm. Res., 25, 825-827(2002)
  13. Kim, D.O., Lee, K. W., Lee, H. J., and Lee, C. Y, Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem., 50, 3713-3717 (2002) https://doi.org/10.1021/jf020071c
  14. Kim, K. H. and Kim, M. N., Constituents of Cathami flos. Yakhak Hoeji, 36, 556-562 (1992)
  15. Kim, S. Y, Gao, J. J., Lee, W. C., Ruy, K. S., Lee, K. R., and Kim, Y. C., Antioxidative f1avonoids from the leaves of Morus alba. Arch. Pharm, Res., 22, 81-85 (1999) https://doi.org/10.1007/BF02976442
  16. Kweon, M. H., Hwang, H. J., and Sung, H. C., Identificationand antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agric. Food Chem., 49, 4546-4655 (2001)
  17. Liu, Y, Wu, Y., Ji, K. C., Hou, A, Yoshida, T., and Okuda, T., Astragalin 2',6'-di-O-gallate from Loropetalum chinense. Phytochemistry, 46(3),389-391 (1997) https://doi.org/10.1016/S0031-9422(97)00295-1
  18. Nuutila, A. M., Puupponen-Pimia, R., Aarni, M., and Oksman Caldentey. K. M., Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 80. 1-9 (2003) https://doi.org/10.1016/S0308-8146(02)00227-3
  19. Ohshima, H.. Yoshie, Y, Auriol, S., and Gilibert, I., Antioxidant and pro-oxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion. Free Radic. Biol. Med., 25,1057-1065(1998) https://doi.org/10.1016/S0891-5849(98)00141-5
  20. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C., Antioxidnat activity applying an improved ABTs radical cation decolorization assay. Free Radic. Biol. Med., 26,1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Rice-Evans, C. A, Miller. N. J., and Paganga, G., Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  22. Rice-Evans, C. A., Miller, N. J., and Paganga, G., Antioxidant properties of phenolic compounds. Trends in Plant Science, 2,152-159 (1997) https://doi.org/10.1016/S1360-1385(97)01018-2
  23. Seto. T.. Yasuda, I., and Akiyama, K., Purgative activity and principals of the fruits of Rosa multiflora and R. wichuraiana. Chem. Pharm. Bull., 40, 2080-2082 (1992) https://doi.org/10.1248/cpb.40.2080
  24. Shin-Kim, J. S., Kim. H. J., and Park, H. K., Studies on the chemical constituents of Lysimachia clethroides. Yakhak Hoeji, 37, 325-330 (1993)
  25. Webby, R. F. and Markham, K. R, Flavonol 3-O-triglycosides from Actinidia species. Phytochemistry, 29. 289-292 (1990) https://doi.org/10.1016/0031-9422(90)89052-B