Effects of Phenolic Compounds of Persimmon Leaves on Antioxidative System and Miscellaneous Enzyme Activities Related to Liver Function in Ethanol-Induced Hepatotoxicity of Rats

감잎의 Phenolic Compounds가 에탄올을 투여한 흰쥐의 항산화계 및 기타 효소활성에 미치는 영향

  • 정창주 (조선대학교 식품영양학과) ;
  • 윤준식 (조선대학교 유전자과학과) ;
  • 이명렬 (조선대학교 식품영양학과)
  • Published : 2004.03.01

Abstract

To investigate antioxidative effects of phenolic compounds separated from persimmon leaves(PL)(Diospyros kaki Thunb.) on the ethanol-induced hepatotoxicity in rat, Sprague-Dawley rats weighing 100-150 g were divided into 5 groups; control group(CON), PL(70 mg/kg) administered group(PEl), ethanol(5 mL/kg, 25%) administered group(ETH), PL(70 mg/kg) and ethanol administered group (PE2), and PL(140 mg/kg) and ethanol administered group(PE3), respectively. The antioxidative activity of persimmon leaves decreased in order of ethylacetate>interphase materials>n-butanol>chloroform>n-hexane>water fraction. The growth rate and feed efficiency ratio decreased by ethanol were gradually increased to the adjacent level of CON by administering PL. The serum activities of ALT, alkaline phosphatase and lactic acid dehydrogenase elevated by ethanol were decreased significantly. It was also observed that the activities of SOD, catalase, and GSH-Px of rat liver increased by ethanol were markedly decreased in PL administered group as compared to ETH. The GSH content of liver was decreased by ethanol, but that was increased in PE1 and PE2 compared with ETH as a dose-dependant manner. These results suggested that phenolic compounds separated from persimmon leaves have a possible protective and relievable effect on the ethanol-induced hepatotoxicity in rats.

감잎 phenolic compounds가 횐쥐에서 에탄올투여로 생성된 oxygen free radical대사와 각종 효소활성에 미치는 영향을 검토하기 위하여 실험동물을 정상군, 감잎 phenolic compounds 투여군(70 mg/kg), 에탄을 단독투여군, 에탄올과 감잎 phenolic compounds 소량 병합투여군(70 mg/kg), 에탄올과 감잎 phenolic compounds 대량 병합투여군(140 mg/kg)의 5군으로 나누어 6주간 사육하여 체중증가율, 식이효율 및 혈청중 ALT, ALP 및 LDH활성 측정과 간손상 억제효과를 검토하기 위하여 간조직중 유리기 생성계 효소인 XO활성, 유리기 해독계 효소인 SOD, calaase 및 GSH-Px활성과 지질과산화물인 TBARS 및 GSH함량을 측정한 결과는 다음과 같다. 각 분획의 항산화력은 EtOAC, n-BuOH, chloroform, n-hexane, water 분획순으로 EtOAC분획의 항산화력이 가장 우수하였다. 에탄올만을 투여한 군은 정상군에 비하여 체중증가율과 식이효율이 유의적으로 감소되었고 감잎 phenolic compounds를 병합투여한 군은 체중증가율과 식이효율이 정상군에 근접하게 상승되었다. 간 손상의 지표로 알려진 ALT, ALP 및 LDH활성은 에탄올투여로 정상군에 비하여 유의하게 증가되었으나 감잎 phenolic compounds를 투여하여 Elf에 비하여 많은 감소를 보였다. 간조직중 유리기 생성계 효소인 XO활성은 에탄올투여로 정상군에 비하여 큰 폭의 증가를 보였으나 본 실험기간내에서는 유의성 있는 변화는 아니었으며 감잎 phenolic compounds를 투여하여 에탄올투여로 증가된 효소활성이 ETB에 비하여 감소는 되었으나 유의한 변화는 아니었다. 유리기 해독계 효소인 SOD, catalase 및 GSH-Px 활성은 에탄올투여로 정상군에 비하여 크게 증가되었으나 감잎 phenolic compounds투여로 ETB에 비하여 뚜렷한 저하효과를 나타냈다. TBA반응성생산물량에서 에탄올투여로 과산화지질함량이 CON에 비하여 많이 증가되어 유의한 변화를 나타냈으나 감잎phenolic compounds는 에탄올투여로 증가된 함량을 ETH에 비하여 1/3∼$\frac{1}{2}$정도 용량의존적으로 감소시켰으며 PEI의 경우 그 함량이 CON보다 오히려 낮았다. 또한 에탄올투여로 감소된 간조직중 GSH함량은 감잎 phenolic compounds 투여로 정상군보다 증가되었다. 이상의 실험결과 에서 감잎 phenolic compounds가 에탄올투여로 증가된 유리기 해독계 효소인 GSH-Px활성을 큰 폭으로 감소시키고 에탄올투여로 감소된 비효소적 항산화작용을 나타내는 GSH함량을 다량 증가시킴으로서 지질과산화물에 대한 방어력이 증가되어 나타난 결과로 여겨지며, 또한 혈청중의 ALT, ALP 및 LDH활성을 유의성있게 감소시키므로서 감잎 phenolic compounds가 에탄올에 의한 간세포 손상에 대한 해독 및 보호작용이 있는 것으로 사료된다.

Keywords

References

  1. Lee, T.B. (1982) Illustrated Flora of Korea. Hayngmunsa, Seoul., 612
  2. Lee, S.J. (1983) lllustrated Botanical List, Komunsa, Seoul, p.1016
  3. Sohn, T.H. Choi, J.U Cho, R.K. and Soong, H.M. (1978) Studies on the Utilization of Persimmons (part 5). Investigation of the Optimum Thickness of Film Bag for Polyethylene Film Storage of Astringent Variety. Korean J. Food Sci. Technol., 10, 73-77
  4. Park, W.K. and Yoo, Y.H. (1976) Effect of gas concentration during the storage of persimmon. J. Korean Soc. Food Nutr., 5, 11-17
  5. Park, W.K. Yoo, Y.H. and Hyun, J.S. (1975) Study on the manufacture jam with korean persimmon. J. Korean Soc. Food Nutr., 4, 25-29
  6. 김진구 . 김광수 (1982) 감엽성분에 관한 연구. 상주농업전문대학 논문집, 21, 95-97
  7. 차원섭 . 김광수 (1984) 시업차 제조방법이 제품의 품질에 미치는 영향. 상주농업전문대학 논문집, 23, 109-111
  8. Hong, J.H. Lee, G.M. and Hur. S.H. (1996) Production of vinegar using deteriorated deastringent persimmons during low temperature storage. J. Korean Soc. Food Nutr., 25, 123-128
  9. Shin, S.R. Moon, K.D. Lee, K.H. and Kim, KS. (1991) Change in the enzyme activities pectines and structure of persimmon fruit during softening., J. Korean Soc. Food Nutr., 22, 611-616
  10. Choi, C.H. (1990) The Aroma Components of Duchung Tea and Persimmon Leaf Tea. Korean J. Food Sci. Technol., 22, 405-411
  11. 성종환 (1986) 감시의 자연탈삽현상 및 탄닌물질의 문포. 박사학위논문, 경북대학교
  12. Joung, S.Y. Lee, S.J. Sung, N.J. Jo, J.S. and Kang, S.K. (1995) The chemical composition of persimmon (Diospyros kaki, Thumb) leaf tea. J. Korean Soc. Food Nutr., 24, 720-726
  13. Park, J.O. and Kim, H.J. (1976) Studies on Ascorbic Acid contents in Persinunon leaves tea by different cooking methods. Journal of the Korean Home Economics Association, 17, 31-61
  14. Chung, S.H. Moon, K.D. Kim, J.K and Seong, J.H. (1994) Change of chemical components in persimmon leaves during growth for processing persimmon leaves tea. Korean J. Food Sci. Technol., 26, 141-146
  15. Park, Y.J. Kang, M.H. Kim, J.I. Park, O.J. Lee, M.S. and Jang, H. (1995) Changes of viarnin C and superoxide dismutase(SOD)-like activity of persinunon leaf tea by processing method and extraction condition. Korean J. Food Sci. Technol., 27, 281-285
  16. Choi, U. Shin, D.H. Chang, Y.S. and Shin, J.I. (1992) Screening of Natural Antioxidant from Plant and Their Antioxidative Effect. Korean J. Food Sci. Technol., 24, 142-148
  17. Bate-Smith, E.C. (1975) Phytochemistry of proanthocyannidins. Phytochemistry, 14, 1107-1118 https://doi.org/10.1016/0031-9422(75)85197-1
  18. Joslyn, M.A. (1970) Methods in food analysis. Academic Press, New York, p.701
  19. Choi, S.W. Kang, W.W. Chung, S.K. and Cheon, S.H. (1996) Antioxidative activity of flavonoids in persimmon leave. Foods and Biotechnology, 5, 119-127
  20. Kameda, K. Takaku, T. Okuda, H. and Kimura, Y. (1987) Inhibitory effects of various flavonoids isolated from leaves of persimmon on angiotensin-coverting enzyme activity. J. Natl. Products, 50, 680-692 https://doi.org/10.1021/np50052a017
  21. Kim, B.G. Rhew, Y.H. Choe, B.S. Chung, H.Y Park, K.Y. and Rhee, S.H. (1993) Effect of selected persimmon leaf components aganist Sarcoma 180 induced tumor in mice. J. Korean Soc. Food Nutr., 22, 307-315
  22. Okonogi, T. Hattori, Z. Ogiso, A. and Mitsui, S. (1970) Detoxification by persimmon tannin of snake venoms and bacterial toxins. Toxico., 17, 524-535
  23. Glatthaar, B.E. Homig, D.H. and Fladmoe, A.V. (1979) Inhibition of chemical carcinogen induced neoplasia by coumanns and a-angelicalactone. Cancer Res., 37, 1051-1063
  24. Uchida, S. Edamatsu, R. Hiramatsu, M. Mori, A Nonaka, G. Nishioka, I. Niwa, M. and Ozaki, M. (1987) Condensed tannins scavenge active oxygen free radicals. Med. Sci. Res., 15, 831-841
  25. Moon, S.H. Kim, J.O. Rhee, S.H. Park, K.Y. Kim, K.H. and Rhew, T.H. (1993) Antimutagenic effects and compounds identified from hexane fraction of persimmon leaves. J. Korean Soc. Food Nutr., 22, 307-318
  26. Song, H.S. Lee, H.K Jang, H.D. Kim, J.I. Park, O.J. Lee, M.S. and Kang, M.H. (1996) Antimutagenic effects of persimmion leaf tea extracts in Sister Chromated Exchange(SCE) Assay System. J. Koraen Soc. Food Nutr., 25, 232-241
  27. Lieber, C.S, (1994) Alcohol and the liver. Gastro., 106, 1085-1097 https://doi.org/10.1016/0016-5085(94)90772-2
  28. Lieber, C.S. and DeCarli, L.M. (1970) Hepartic microsomal ethanol oxidizing system : In vitro characteristics and adaptive properties in vivo. J. Biol. Chem.,. 245, 2505-2516
  29. Yoshikawa, T. and Kondo, M. (1989) Free radical lipid peroxidation and vitamin E in liver injury. In 'Handbook of free radical and antioxidants in biomedicine' Jaine, M., Alexander, T. and Qintanihala, H.(eds), Weber, CRC Press., 2, p.l67-178
  30. Hong, Y.S. Ham, Y.A. and Sung, N.E. (1984) The effects of vitamin A and E on lipid peroxidation administered rat liver microsomes. Ewha Med., 7, 3-9 https://doi.org/10.12771/emj.1984.7.1.3
  31. Fujji, M. Ohmachi, T. Sagarni, I. and Watanabe, M. (1985) Liver microsomal drug metabolism in ethanol treated hamsters. Biochem. Pharmacol., 34, 3881-3890 https://doi.org/10.1016/0006-2952(85)90438-1
  32. Blois, M.S. (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1206 https://doi.org/10.1038/1811199a0
  33. Kirigaya, N. Kato, H. and Fujimarki, M. (1971) Studies on antioxidant activity of non-enxymatic browning reactions (lll). Fractionation of browning reaction solution between ammonoa and D-glucose and antioxidant activity of the resulting fractions. J. Agr. Chem. Soc. (Japan), 45, 292-301
  34. Crapo, C.H. McCord, J.M and Fridovich, I. (1978) Preparation and assay of superoxide dismutase, Methods enzymol. ed. Fleischer S and Packer L., Academic press, New York, 53, p.382-422
  35. Aebi, H. (1974) Catalase, Methods of enzymatic analysis, Bergmeyer HU, Bergmeyer, J and Grabi, M., eds. 3rd ed., Verlag. chemie., 2, p.673-688
  36. Downry, J.M. Miura, Y. Eddy, L.J. Chambers, D.E., Mellen, T. Hearse, DJ. and Yellon, D.M. (1987) Xanthine oxidase is not a source of free radicals in the ischemic rabbit heart. J. Mol. Cell Cardiol., 19 ,1053-1067 https://doi.org/10.1016/S0022-2828(87)80350-4
  37. Flohe, L. Wolfgng, A. and Gunzler, W.A. (1984) Assay of glutathine peroxidase. In Methods in enzymatic analysis. Packer. L. eds. Academic Press, Inc., New York, p.l14-124
  38. Buege, J. A. and Aust, S.D. (1969) Microsomal lipid peroxidation. In 'Methods in enzymoogy' Packer, L. (ed.), Academic Press, New York, 27, 502-511
  39. Tietze, F. (1969) Enzymatic methods for quantitative determination of nanogram amounts of total and oxidized glutathione. Anal. Biochem., 27, 502-513 https://doi.org/10.1016/0003-2697(69)90064-5
  40. Lowry, C.H. Rsenbrough, N.J. Farr, A.L. and Randall, R. J. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem., 193, 265-275
  41. Su, J.D. Osawa, T. Kawakishi, S. and Namiki, M. (1988) Tannin antioxidants from Osbeckia chinensis. Phytochemistry, 27, 1315-1322 https://doi.org/10.1016/0031-9422(88)80184-5
  42. Okamura, H. Mimura, A. Yakou, Y. Niwano, M. and Takahama, Y. (1993) Antioxidant activity of tannins and flavonoids in Eucalyptus rostrata. Phytochemistry, 33, 557-563 https://doi.org/10.1016/0031-9422(93)85448-Z
  43. Lieber, C.S. (1986) The influence of alcohol on nutritional status. Nutr. Rev., 46, 24-35 https://doi.org/10.1111/j.1753-4887.1988.tb05350.x
  44. Lieber, C.S. and DeCarli, L.M. (1986) The feeding of ethanol in liquid diet. Alcoholim : Clin. Exp. Res., 10, 550-560 https://doi.org/10.1111/j.1530-0277.1986.tb05140.x
  45. Zimmerman, H.J. (1981) Chemical hepatic injury and its detection, in toxicology of the liver, Plaa, G. L. and Hewitt, W. R., eds., Raven press, 22, p.1-10
  46. Stocker, R. and Frei, B. (1991) Endogenous antioxidant defences in human blood plasma. In oxidative stress, Sies, H. ed. Academic Press, New York, 60, p.213-224
  47. Fridovich, I. (1986) Bilogical effects of the superoxide radical, Arch. Biochem. Biophys., 247, 1-45 https://doi.org/10.1016/0003-9861(86)90526-6
  48. Fridovich, I. (1989) Superoxide dismutases, J. Biol. Chem., 264, 7761-7770
  49. Fridovich, I. (1975) Superoxide dismutase, Annu. Rev. Biochem., 44, 147-151 https://doi.org/10.1146/annurev.bi.44.070175.001051
  50. Robbins, S.L. and Kumar, V,K. (1987) Basic pathology, Saunders, New York, p.14-21
  51. Smuckler, E.A. and Koplitz, M. (1969) The effects of carbon tetrachloride and ethione on RNA synthesis in vivo and in isolated rat liver nuclei. Arch. Biochem. Biophs., 132, 62-71 https://doi.org/10.1016/0003-9861(69)90338-5
  52. Krenitsky, T.A. (1973)Xanthine oxidase and aldehyde oxidase in purine and purine analogue metabolism. Exp. Med. Biol. p.151-169
  53. McCord, J.M. and Fridovich, I. (1969) Superoxide dismutase an enzymatic function for erythrocuprein (hemocuprin), J. Biol. Chem., 244, 6049-6059
  54. Fred, J. Yost, J. and Fridovich, I. (1976) Superoxide and hydrogen peroxide in oxygen damage. Arch. Biochem. Biophys., 175, 514-519 https://doi.org/10.1016/0003-9861(76)90539-7
  55. Dolphin, D. Forman, A. Berg, D.C. Fajce, J. and Felton, R, H. (1971) Compounds I of catalase and horeradish peroxidase. Proc. Natl. Acad. Sci. USA, 68, 614-623 https://doi.org/10.1073/pnas.68.3.614
  56. Jones,D. P. Eklow, L. Thor, H. and Orrenius, S. (1981) Metabolism of hydrogen peroxide in islated hepatocytes : relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated $H_2O_2.$ Arch. Biochem. Biophys., 210, 505-513 https://doi.org/10.1016/0003-9861(81)90215-0
  57. Recknagel, R.O. Glende, E.A, and Hruszkewyez, A.M. (1977) Chemical mechanisms in carbon tetrachloride toxicity. in 'Free radicals in biology' Pryor, W. A. (ed.), Academic Press, New York, p.91-110
  58. Plaa, G.L. and Wistschin, H. (1976) Chemicals, drugs and lipid peroxidations. Am.. Rev. Toxicol. Pharmacol., 16, 125-131
  59. Lieber, C.S. (1980) Interaction of ethanol witr drug, hepatotoxic agent, carcinogen and vitamins. Alcoholism, 25, 157-164
  60. Vina, J. Estrella, J.M. Guerro, C. and Romero, F.J. (1980) Effects of ethanol on glutathione concenturation in islated hepatocytes. Biochem. J., 188, 549-558 https://doi.org/10.1042/bj1880549
  61. Videlia, L.A. Femanded, V, Valenzuela, A. and Ugarte, G. (1980) The effects of chronic alcohol on glutathione in islated hepatocytes. Biochem. J., 188, 549-556 https://doi.org/10.1042/bj1880549
  62. Lieber, C.S. (1980) Increased loss and decreased synthesis of hepatic glutathione after acute alcohol administration. Phamacol. Biochem. Behav., 13, 17-29 https://doi.org/10.1016/0091-3057(80)90113-6
  63. Aykac, G. Usnal, M. Yalcin, S. Kocak-Toker,N. Sivas, A. and Oh, H. (1985) The effects of chronic ethanol ingestion on hepatic lipid peroxide, glutathione peroxide, and glutathione transferase in rats. Toxico., 36, 73-77
  64. Girotti, A.W. Thomas, J.P. and Jordan, J.E. (1985) Inhibitory effect of Zinc( II) on free radical lipid peroxidation in erythrocyte membranes. J. Free Rad. Bio. Med., 1, 395-404 https://doi.org/10.1016/0748-5514(85)90152-7