DOI QR코드

DOI QR Code

Development of AC Thermal Anemometry

교류방식 유속 측정법 개발

  • 정원석 (서울대학교 기계항공공학부) ;
  • 권오명 (한국기계연구원) ;
  • 최두선 (홍익대학교 기계시스템디자인공학과) ;
  • 박승호 (중앙대학교 기계공학부) ;
  • 최영기 (서울대학교 기계항공공학부) ;
  • 이준식 (고려대학교 기계공학과)
  • Published : 2004.02.01

Abstract

This paper suggests and demonstrates a novel flow measurement technique: tunable AC thermal anemometry that allows simple integration, robust measurement, and extremely high accuracy. The principle and simple theoretical analysis of the technique are presented. To find the optimal condition at which the phase lag becomes most sensitive to flow speed change, the phase lag was measured scanning the heating frequency from 1 to 100 Hz, while the flow speed of ethanol was increased stepwise from 0 to 40 mm/s. The sensitivity of phase lag depended on the heating frequency and the flow speed. It was possible to measure the flow speed of 0.7 mm/s with the resolution of 0.1 mm/s at 4 Hz.

Keywords

References

  1. Nguyen, N. T., 1997, 'Micromachined Flow Sensors - a Review,' Flow Measurement and Instrumentation, Vol. 8, No. 1, pp. 7-16 https://doi.org/10.1016/S0955-5986(97)00019-8
  2. Oosterbroek, R. E., Lammerink, T. S. J., Berenschot, J. W., Krijnen, G. J. M., Elwenspoek, M. C. and Ben A., 1999, 'A Micromachined Pressure/Flow-Sensor,' Sensors and Actuators, Vol. 77, pp. 167-177 https://doi.org/10.1016/S0924-4247(99)00188-0
  3. Neda, T., Nakamura, K. and Takumi, T., 1996, 'A Polysilicon Flow Sensor for Gas Flow Meters,' Sensors and Actuators A, Vol. 54, pp. 626-631 https://doi.org/10.1016/S0924-4247(97)80027-1
  4. Wu, S., Lin, Q., Yuen, Y. and Tai, Y. -C., 2001, 'MEMS Flow Sensors for Nano-Fluidic Applications,' Sensors and Actuators A, Vol. 89, pp. 152-158 https://doi.org/10.1016/S0924-4247(00)00541-0
  5. Okulan, N., Henderson, H. T. and Ahn, C. H., 2000, 'A Pulsed Mode Micromachined Flow Sensor with Temperature Drift Compensation,' IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 40, No. 2, pp. 340-347 https://doi.org/10.1109/16.822278
  6. Gamage S. K., Okulan, N. and Henderson, H. T., 2000, 'Behavior of Bulk Micromachined Silicon Flow Sensor in the Negative Differential Resistance Regime,' Journal of Micromechanics and Microengineering, Vol. 10, pp. 421-429 https://doi.org/10.1088/0960-1317/10/3/318
  7. Toda, K., Sanemasa, I. and Ishikawa, K., 1996, 'Simple Temperature Compensation of Thermal Air-Flow Sensor,' Sensors and Actuators A, Vol. 57, pp. 197-201 https://doi.org/10.1016/S0924-4247(97)80114-8
  8. Qui, L., Hein, S., Obermeier, E. and Schubert, A., 1996, 'Micro Gas-Flow Sensor with Integrated Heat Sink and Flow Guide,' Sensors and Actuators A, Vol. 54, pp. 547-551 https://doi.org/10.1016/S0924-4247(97)80012-X
  9. Bedo, G, Fannasch, H. and Muller, R., 2000, 'A Silicon Flow Sensor for Gases and Liquids Using AC Measurements,' Sensors and Actuators, Vol. 85, pp. 124-132 https://doi.org/10.1016/S0924-4247(00)00380-0
  10. Kuijk, J., Lammerink, T. S. J., Bree, H. -E., Elwenspoek, M. and Fluitman, J.H.J., 1995, 'Multi-Parameter Detection in Fluid Flows,' Sensors and Actuators A, Vol. 46-47, pp. 369-372 https://doi.org/10.1016/0924-4247(94)00923-6
  11. Nguyen, N. T. and Kiehnscherf, R., 1995, 'Low-Cost Silicon Sensors for Mass Flow Measurement of Liquids and Gases,' Sensors and Actuators A, Vol. 49, pp. 17-20 https://doi.org/10.1016/0924-4247(95)01016-T
  12. Ashauer, M., Glosch, H., Hedrich, F., Hey, N., Sandmaier, H. and Lang, W., 1999, 'Thermal Flow Sensor for Liquids and Gases Based on Combinations of Two Principles,' Sensors and Actuators, Vol. 73, pp. 7-13 https://doi.org/10.1016/S0924-4247(98)00248-9
  13. Cahill, D. G, 1990, 'Thermal Conductivity Measurement from 30 to 750 K : the $3{\omega}$ Method,' Review of Scientific Instruments, Vol. 61, No. 2, pp. 802-808 https://doi.org/10.1063/1.1141498