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PROPERTIES OF Q-REFLEXIVE
LOCALLY CONVEX SPACES

MILENA VENKOVA

ABSTRACT. Q-reflexive locally convex spaces are spaces where
® E! and (P("E), ), are isomorphic in a canonical way for ev-

n,s,w

ery n. We investigate properties and find examples of such spaces.

A Banach space FE is Q-reflexive if for every n the space P("E)" is
isomorphic to P("E”) in a canonical way. Q-reflexive Banach spaces
were defined by R. Aron and S. Dineen in [3], and in [11] the defini-
tion was changed by Gonzdlez to its present form. Q-reflexive locally
convex space were defined in [7], also there were given examples of such
spaces. In this paper we investigate properties of Q-reflexive locally con-
vex spaces and give further examples. Many of the results of this paper
appear in [16].

We refer to [9] and [10] for background information on polynomials
over locally convex spaces, and to [13] and [14] for the general theory of
locally convex spaces.

1. In this section we give some known results about Q-reflexive locally
convex spaces and introduce notation that will be used throughout the
article. If E is a locally convex space over the complex numbers C, we
let E denote the completion of E, and let E’ denote the space of all
continuous linear functionals on E. If E’ is endowed with the strong
topology (i.e. the topology of uniform convergence over the bounded
subsets of E), we denote it by Erg We say that F is infrabarrelled if
the canonical inclusion of E into Ej := (E})} is continuous. Let V be
a fundamental 0-neighbourhood basis of F, the collection (V°°)y ¢y is
a fundamental 0-neighbourhood basis for the natural topology on E”.
The bidual of E endowed with the natural topology is denoted by E.
Tt is well known that E is infrabarrelled if and only if the bounded
subsets of EZ; are equicontinuous. A locally convex space E is barrelled

Received November 7, 2002.
2000 Mathematics Subject Classification: 46(G25.
Key words and phrases: homogeneous polynomial, Q-reflexive space.



52 Milena Venkova

if and only if the o(E’, F)-bounded subsets in E’ are equicontinuous
(thus every barrelled space is infrabarrelled), and is Ro-barrelled if and
only if every o(E’, E)-bounded subset of E’ which is a countable union
of equicontinuous sets is itself equicontinuous.

For E a locally convex space we let P("E) denote the space of all
continuous n-homogeneous polynomials on E. The topology on P("E)
of uniform convergence over the bounded subsets of E is denoted by 7.
Clearly when n = 1 we have Ej := (P(E), ). If U is a fundamental
system of absolutely convex 0-neighbourhoods of E, the inductive dual
of E, El, is defined as the inductive limit

E| = lim El.
veu

If @ I denotes the completed symmetric n-fold tensor product of

7,8,

E endowed with the projective tensor topology, then ( @ E),ﬁ and

7,8,7
(P(™E), B) are isomorphic, where 3 is the topology of uniform conver-

gence over the bounded subsets of @ E. The space E has (BB), if
1,8,
the closed convex hull of ®,, ;B forms a fundamental system of bounded

subsets of @ E as B ranges over the bounded subsets of E. Clearly

E has (BB), if and only if ( @ E):e and (P("E), 1) are isomorphic.
The locally convex space E has (BB)s if and only if it has (BB),
for every n. A locally convex space E has the strict approzimation
property if it admits a fundamental system A of semi-norms such that
E4 = (E,a)/at(0) has the approximation property for each o € A.

Let P € P("E) and let AB,,(P) denote the Aron-Berner extension of
P to E” := (E}) (see [2]). The mapping

In: @QE" — (P("E), ),

given by [Jn(m”)] (P) = [AB.(P)](z") for all P € P(*E) and all
z" € E”, and extended by linearity, is well defined. Let
(1) I @ El— (P("E),m);.

7,8,
The following definition is given in [7].

DEFINITION 1.1. The locally convex space E is ¢-reflexive if for every
positive integer n,
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1. the mapping J2¥ is continuous,
2. tilg extension of J2 to the completion is an isomorphism between
Q@ E¢ and (P("E),m);-
n,8,7T
By [7] Q-reflexive spaces are infrabarrelled.
Next we consider certain subspaces of P("E). An n-homogeneous
polynomial P on F is called nuclear if there exist an equicontinuous
sequence (¥;); in B’ and (\;); in I3 such that

P(z) =) Nti"(x)
3=1

for all z € E. Let Py("E) denote the space of all nuclear polynomials
on E. If A is a subset of E let

mN,A(P) = IPlly,a = inf [ 3 Nillwilly : P =~ Ao,
i=1 =1

As A ranges over the bounded sets of E we obtain the m, topology. If
E% has the strict approximation property then by ([6], p.186)

2) Pn("E),m) = @ Ej

We let
(PN("E),my) = lim (Pn("Ey),m).

—

accs(E)

An n-homogeneous polynomial P on a locally convex space E is integral
if there is an absolutely convex closed neighbourhood of 0, U, and a
finite regular Borel measure y on U° endowed with the w*-topology, so
that

P@) = [ v (@)duto)

for all z € E. The space of all n-homogeneous integral polynomials on
E is denoted by P;("E), and the topology 71 on Pr("E) is defined as
the locally convex inductive limit

(Pr("E),m1) = im (P("Ev), || - lv,1),
Ucl

where

1Pl = it Ple) = | v (@)dutw)),
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A polynomial P € P("E) has finite rank if there exists a finite subset
{@i}'_; in E' such that

!
P@a) =" ¢}(a)
i=1

for all x € E. We let Ps("E) denote the space of all n-homogeneous
polynomials of finite rank on E. Polynomials in P4("E), the closure of
P¢("E) in (P("E), 1), are called continuous approzimable polynomials.
By ([6], Propositions 1 and 2)

(PA(nE)aTb> = ® E{’;’
7,8,
and
(Pr("Ep),71) = (Pa("E), );.
We have the following characterization of Q-reflexivity ([7], Proposition
4.2):

PROPOSITION 1.2. If E' is an infrabarrelled locally convex space whose
strong bidual has the strict approximation property, then the following
conditions are equivalent:

1. F is Q-reflexive,

2. (Pn("Ej), m) = (P1("E}),71) and P("E) = Pa("E).

REMARK 1.3. In the proof of (2)=(1) in Proposition 1.2 we do not
need the assumption that Eg has the strict approximation property.

For Fréchet spaces Proposition 1.2 can be reformulated in the follow-
ing way:

PROPOSITION 1.4. If E is a Fréchet space whose strong bidual has
the strict approximation property, then the following conditions are
equivalent:

1. FE is Q-reflexive,
2. (PN("E’ﬁ),m,) = (PI("E'ﬁ), 771) and P("E) = P4("E).

Proof. By Proposition 1.2 and (2) suffices to show that every element

Pin @ Ej belongs to Pn("E}). By ([14], 15.6.4) P admits a repre-
,8,7

sentation Y .o, )\z(%i) z}) where (X\;); € l1 and (z); is a null sequence in

Ej. By ([14], Theorem 12.4.3) (z}); is equicontinuous, so by identifying
P with the polynomial 3 ;2 A;(z})" we see that P is nuclear. O

)
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2. We are ready now to extend some of the properties of Q-reflexive
Banach spaces (see [3], [11] and [15]) to more general classes of spaces.
We omit the proof of Proposition 2.1 because of its similarity to the
corresponding proof in the Banach space case ([10], Corollary 2.46).

PrOPOSITION 2.1. Let E be a Q-reflexive locally convex space whose
strong bidual has the strict approximation property. Then l; is not
isomorphic to a subspace of Eb

PROPOSITION 2.2. Let E be a Q-reflexive locally convex space whose
strong bidual has the strict approximation property. Then [ is not
isomorphic to a subspace of E.

Proof. Suppose l; — FE. By a result of Grothendieck the canonical in-
clusion i : [; — I can be factored through L*°[0, 1] and L?[0, 1] in the fol-
lowing fashion. The classical Rademacher functions on [0, 1], (rn(t))5%,,
form an orthonormal sequence in L?[0,1] and a bounded sequence in
L>[0,1]. Let (e,)22; denote the standard vector basis for 1 and let
s : Iy — L*[0,1] be defined by s(ep) = r, and extended by linearity.
Since ||r,|| = 1 the mapping s is continuous. Let T : L>[0,1] — L2[0, 1]
denote the canonical inclusion mapping. We define R : L2[0,1] — I3
by mapping (r,(t))22, onto the standard orthonormal basis in l; and

extending it by linearity. The diagram

h———1

|
L>[0,1] — L2[0,1]

is commutative and all mappings are continuous ([10], p.116). By ([14],
Corollary 15.7.3) since [; is a closed subspace of E, L'[0,1]®!; is a
s

closed subspace of L'[0,1] & E. Since £(i1, L=[0,1]) = (L'[0, 1] ® l1)’,

we have that s € (L[0,1] @ll)'. By the Hahn-Banach Theorem the

ks
mapping s can be extended to a continuous mapping U : E — L*°[0, 1]
8o that the following diagram commutes:

I _* o Iy
k Tj::RoT

E—% >0, 1]
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where k is the inclusion of /; in E.

Let P((2n)n) = Y ey %2 for (2,)3%; € l2. Then P is a 2-homogene-
ous continuous polynomial on I3, and @ := PojoU is a 2-homogeneous
continuous polynomial on E. We will show that @ is not an element of
Pa (2E)

Suppose Q € Pa(2E), then there exists a net (Qq) in P¢(2E) such
that Q = limg—,00 Qo uniformly on the bounded sets of E. In particular
Qly, = lima—oo Qqlr, on the unit ball of l3. Since (I1) = Iy has the
approximation property, P4(?1) = P,(*l1) and consequently Q[;, €
Pw(?l1). By ([10], Proposition 2.6) the mapping dQl;, : l1 — loo is
compact. If (e, ), is the standard vector basis in ; then

Q(k(en)) = Qok(en) = PojoUok(en) = Poien) = Plen).
Thus dQ|y, (k(en))(y) = 2y, where y = (¥i)2, € l1. For m # n we have:

1dQLs, (k(en) = k(em)) W) =2 sup |yn — ym| > 2.
y€By,

Hence cZQ]lI is not compact and consequently @ is not in P4(2E), which
contradicts Q-reflexivity. O

LEMMA 2.3. Let E be a complete Q-reflexive locally convex space
whose strong bidual has the strict approximation property. Then the
space Eé does not contain an isomorphic copy of ¢y (or lw).

Proof. Suppose ¢y < E’ﬁ By ([5], Theorem 8) E contains a comple-
mented copy of [, which contradicts Proposition 2.2. O

LEMMA 2.4. Let E be a Q-reflexive locally convex space whose strong
dual is an Rg-barrelled complete space and whose strong bidual has the
strict approximation property. Then E does not contain an isomorphic
copy of cg.

Proof. Suppose ¢y —~ E. Then lo, = ¢ is a subspace of Ej, hence
co — Ej. By ([5], Theorem 8) Ej; contains a complemented copy of I,
which contradicts Proposition 2.1. |

REMARK 2.5. Both Fréchet and complete DF Q-reflexive spaces whose
strong bidual has the strict approximation property satisfy the condi-
tions of Lemma 2.3 and Lemma 2.4.

For the next proposition we need to impose stronger conditions on
E.
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DEFINITION 2.6. A topological space X is called angelic if every rel-
atively countably compact subset A C X is relatively compact in X and
every = € A is the limit of a sequence in A. We say that a locally convex
space E is weakly angelic if (E,o(E, E")) is angelic.

Following the convention in [5] we say that a pair of locally convex
spaces (F, F) is admissible if

1. both E and F' are complete and weakly angelic;

2. E is Ng-barrelled;

3. the space Ly(E, F') admits a strict web in the sense of De Wilde.

Pairs (E, F') where E is Fréchet space and F is complete DF space (or
vice versa) are admissible ([5], p.6). We also need the following lemma:

LEMMA 2.7. If E is a Q-reflexive locally convex space with (BB)
and whose strong bidual has the strict approximation property, then
& E;=(Q E)j for every n.

7,8, n,8,m

Proof. Using tensor representations we have

Q Ej = (Pa("E),n) = (P("E), ™),

n,s,e
and since E has (BB)-property the topologies 8 and 7, are equal.
Thus

(P("E),m) = (P("E),B) = (® B)j.

7,8,

O

DEFINITION 2.8. Let F be a locally convex space. The e-product,
EeF, is the operator space L.(E/, F) of all weak*-weakly continuous
linear maps from E’ into F' which transform equicontinuous subsets of
FE’ into relatively compact subsets of F, endowed with the topology of
uniform convergence on the equicontinuous sets in F’.

PROPOSITION 2.9. Let E be either a

(a) complete DF space, or

(b) Fréchet space with (BB).o-property.

If E is Q-reflexive space and its strong bidual has the strict approx-
imation property, then the space ly is not isomorphic to a subspace of
(P("E), ) for any n.

Proof. (a) Suppose there exists an integer n > 1 such that o, —
(P("E), 7). By the Q-reflexivity (P("E), )= (Pa("E), )= & Ej,

7,8,
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hence [, — E’ﬁe .- -5E’ﬂ. By Definition 2.8 this is equivalent to [, —
| A S——

n
Le((Eje - --€Ep)., Ej). By ([14], Proposition 16.1.2 and Theorem 16.1.5)
N —_

n—1

the space Eje - - -eEj is Fréchet, hence (Eje - eEg)b is a complete DF
—_—— ———

n—1 n—1

space and the pair ((Eje - 'eEé)b, Ej) is admissible. By ([5], Theorem
A

n—1
9) leo is a subspace either of (Eje - - - ¢Ejp) or of Ej. By the Q-reflexivity
(A —

n—1
and Lemma 2.3 we have I </ Elﬁ’ consequently o — E‘ée- : -sEg.
| A ——
n—1
Repeating the above argument n — 1 times we arrive to the conclusion
that loc < Ej, which contradicts Lemma 2.3.
(b) As in (a) suppose there exists an integer n > 1 such that [, —
(P("E),n) = @ Ej. By ([14], p.344)
n,8,€
® Ez— E;Q( ® Ej) — Ege( Q Ep),
7,8, € n—1,s,e n—1,s,&

hence lo, — Eje( @ Ej;). By Lemma 2.7 ( @ E)p = @ E},
n—1,s,e n—-1,s,7 n—1,s,e
hence

lo = L((( @ E)y)Ep).

Since the space ( @ E)j is Fréchet, the pair (( @ E)j, Ej) is ad-
n—1,s.7 n—1,8,7
missible and by ([5], Theorem 9) I, is a subspace either of ( @ E)j
n—1,8,7

or of Ej. By Q-reflexivity and Lemma 2.3, lc %~ Ej, consequently

o= ( @ E)y=(P("E),n).

n—1,s,m

Repeating the above argument n — 1 times we get loo — E'ﬁ, which
contradicts Lemma 2.3. [

COROLLARY 2.10. Let E be a complete DF space or a Fréchet space
with (BB)s. If E is Q-reflexive and its strong bidual has the strict
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approximation property, then the space l; is not complemented in @ E
n,8,7
for any n.

Proof. Follows from Proposition 2.9 and ([5], Corollary 7). O

3. In this section we investigate the connection between (semi)reflexi-
vity and Q-reflexivity. First we need to give some definitions. Defant, in
[8], introduces locally convex spaces whose duals have the local Radon
Nikodym Property (local RNP), as follows: F is said to have a dual with
the local RNP if for every probability space (2, %, 1) all operators T :
LY() — E' which map some neighbourhood of 0 into an equicontinuous
set are locally representable. In [6], Boyd renames a space which has a
dual with the local RNP locally Asplund. Nuclear spaces, semireflexive
guasinormable spaces and gDF spaces with separable duals are all locally
Asplund. In [6] is shown that if F is locally Asplund then (Pr("E), 1) =
(PN("E), Tw).

PROPOSITION 3.1. Let E be a reflexive DF space with the strict ap-
proximation property and such that E’ﬂ is quasinormable. The following
conditions are equivalent:

1. F is Q-reflexive,
2. P4("E) =P("E) for every n,
3. the space (P("E), ) is reflexive for every n.

Proof. By the hypothesis Eg is a quasinormable reflexive space, hence
by [8] it is locally Asplund. Thus (P("Ep), 1) = (Pn("E}), my). Since
reflexive spaces are barrelled E’ﬁ is a distinguished Fréchet space, and by
([9], Corollary 1.53) my, = m, on Py ("Ej). By Proposition 1.2 (1)<(2).
(2)<(3) follows from ([6], Corollary 13). O

REMARK 3.2. If E is DF space which is separable or has the strict
Mackey condition, then E’ﬂ is quasinormable.

A similar result holds in the Fréchet space case.

PROPOSITION 3.3. Let E be a reflexive Fréchet space with the strict
approximation property. The following conditions are equivalent:

1. E is Q-reflexive,

2. P4("E) =P("E) for every n,

3. the space (Pa("E),Ty) is semireflexive for every n.
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Proof. The space E’ﬁ is a reflexive DF space and, in particular, is in-
frabarrelled and locally Asplund. By ([6], Theorem 3) and ([9], Corollary
1.53) (’P[("Eé),’r]) = (PN("E’ﬂ),m,). Applying Proposition 1.4 gives us
(1)&(2).

(2)<(3) follows from ([6], Corollary 10). O

4. The first known examples of Q-reflexive Banach spaces were the

[oe]
Tsirelson space 7™ and the Tsirelson-James space 75. By [7] €D 77,
j=1

kl—Il T7 and Fréchet-Montel spaces with (BB) are Q-reflexive locally

convex spaces. In this section we give further examples of such spaces.
PRrROPOSITION 4.1. Let E be a DEM space. Then E is Q-reflexive.

Proof. Since FE is DFM it is reflexive and infrabarrelled, hence

——

QE=QE=QE

n,8,T 70,8, n,8,mT

By ([14], Theorem 15.6.2) @ E is a DFM space and in particular is

n,s,m

reflexive and barrelled. Thus ( @ E)j is distinguished Fréchet space

and, by ([4], Corollary 3.4), ( @ E)s = ( @ E)3. As a DF space E
n,s,m 7,8,7
has (BB)eo,
(PC"E), )i =(® E)g =(Q® E)g= @ E.
n,8,7T n,8,7 n,8,7T

By the definition of J, it is an isomorphism. O

LEMMA 4.2. Let G be a Fréchet space with (BB), and F be a Fréchet
nuclear space. Then the space E := G x F has (BB) .

Proof. Let B be a bounded subset of @ E. By ([1], Theorem 2.2)

QE= (RO ® F),

7,8, k=0 k,s,7 T n—k,s,m
hence there exist By, By,..., B, such tlla\t B C By x Bl/\x ---x B, and
By, is a bounded subset of (@ G)®( @ F). Since Q) F is nuclear,

k,s,m m n—k,s7w n—k,m

the pairs {@G, @ F'} have the (BB) property ([14], Theorem 21.5.8),

ko n—km
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hence each By is contained in ['(B},@BY) for some Bj, bounded in @ G

k,s,m

and Bj, bounded in @ F. Since G and F have (BB) there exist

n—k,s,m

B], bounded in G and BY! bounded in F such that B} C T(®Bj) and
ks
Bl c I'( ® Bl). Hence B' = U}_oBj and B” = UP_y By are bounded

n—k,s

subsets in G and F' respectively, and B = B’ x B" is bounded in E. The

set B is contained in T'(® B), hence E has the (BB)c. O
n,s

We will also need the following result of Grothendieck ([12]):

PROPOSITION 4.3. If Z and W are Eréchet (respectwely DF) spaces
and one of them is nuclear then (Z ® W)s=Zj ® W

PROPOSITION 4.4. Let G be a Q-reflexive Fréchet space with (BB )
and such that Gg has the strict approximation property, and F be a
Fréchet nuclear space. Then E = G x F is Q-reflexive.

Proof. By ([1], Theorem 2.2)

——~

(®EL=(RCExM),-(ROB( & F,

n,8,7 n,8,T k=0 k,s,7 T n—k,s,n

If kK = n, by Lemma 2.7 (@ G)y = @ Gj. Let 1 < k < n. Since

7,8, 1,8,

( @ G)j is DF and ( @ F)j5 a DFN, we have
k,s,m n—k,s,mw
(BB ® P;= (BB ® P

By Proposition 4.3

——

(OB ® M=(R6:R( & M
k,s,m € n—k,sm k,s8,m T n—k,s,m
Thus,
(P("E),8) = (® E); = @<®G>ﬁ®< ® F)j

7,8, k=0 k T n—k,s,m

- DR B P

k=0 k,s,7 e n—k,smw
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By Lemma 2.7 applied to G and by the nuclearity of F,

DRV @ FI=0 (RENR( ® ),
k=0 k,s,m € n—k,sm k=0 ks, € n—k,sse

hence

n —

(PCE)B) = @ [(RCHR( ® Fp)]

k=0 k,s,e € n-—k,s,¢

= ® (G x F)y = (P4("E), m).

1,8,6

,8
In particular P("E) = P4("E). By ([6], Propositions 1 and 2),

(Pr("Ep),71) = (Pa("E),m)i = (& Ep))-

n,s,&

Since @ Ep = ( @ E)} is DF we have (@ Ep); = (@ Ej)5. More-

7,8, 7,8, 7,8, n,8,€
over
P~ oy pny !
(® By = (®(Cx P, = O (BB & Fy)l,
7,8, n,8,€ k=0 k,s,¢ n—k,s,e
If k = n, by the Q-reflexivity of G we have
©  (BoL=(@0i-8 %
Let 1 <k <n. Since @ F} is DFN, by Proposition 4.3
n—k,s,e
EB [(®G’)®( ® Fply= €B (R Gl ®( Q@ Fp)pl-
k=0 k,s.¢ n—k,s,e k=0 k,s,¢ n—k,s,e

Using (3) and the nuclearity of F,
S (®C® ® Kyl = SUBHB & )]

k=0 k,s,e T n—k,s, k,s,7 T n—k,s,mw

= ® (@ xFY,

72,8,7

Hence by representation (2),

(PI("Ep), 1) = (@ E)i= @ (Gx FYy= @ Ej=(Pn("Ej),m).

n,8,& n,8,7m 7,8,

Applying Proposition 1.4 completes the proof. O
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This proposition gives us a range of non-Banach Q-reflexive spaces.
If the space G is nonreflexive, for example T;* or T* @ T;*, then F is
K

nonreflexive and Q-reflexive.
The following result can be proved similarly to Proposition 4.4.

PROPOSITION 4.5. Let G be a Q-reflexive DF space such that Ggﬂ

has the strict approximation property, and let F' be a DFN space. Then
E =G x F is Q-reflexive,
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