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PLANK PROBLEMS, POLARIZATION
AND CHEBYSHEV CONSTANTS

SZILARD GY. REVESZ AND YANNIS SARANTOPOULOS

ABSTRACT. In this work we discuss “plank problems” for complex
Banach spaces and in particular for the classical L,(u) spaces. In
the case 1 < p < 2 we obtain optimal results and for finite dimen-
sional complex Banach spaces, in a special case, we have improved
an early result by K. Ball [3]. By using these results, in some cases
we are able to find best possible lower bounds for the norms of
homogeneous polynomials which are products of linear forms. In
particular, we give an estimate in the case of a real Hilbert space
which seems to be a difficult problem. We have also obtained some
results on the so-called n-th (linear) polarization constant of a Ba-
nach space which is an isometric property of the space. Finally,
known polynomial inequalities have been derived as simple conse-
quences of various results related to plank problems.

1. Introduction

Recall that a convezr body in R™ is a compact convex set that has a
non-empty interior. A plank in R" is the region between two parallel
hyperplanes. In 1930 Tarski posed the plank problem:
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TARSKI'S CONJECTURE. If a convex body of minimum width 1 is
covered by a collection of planks in R™, then the sum of the widths of
these planks is at least 1.

Tarski himself proved this if the body is an Euclidean ball in 2 or 3
dimensions. The problem was solved in general by T. Bang [5] in 1951.

Given a convex body K, the relative width of a plank S is the width
of S divided by the width of K in the direction perpendicular to S. T.
Bang asked a more general question:

QUESTION 1. If a convex body is covered by a union of planks, must
the relative widths of the planks add up to at least 17

The general case of this affine plank problem is still open. However,
in the special case in which the convex body is centrally symmetric the
problem was solved by K. Ball in [3]. Observe that if K is a centrally
symmetric convex body, then it may be regarded as the unit ball of
some finite-dimensional Banach space. In the next section we discuss
K.Ball's results on the plank problem. By using the local theory of
Banach spaces we also state and prove a plank-type problem for L,-
spaces. Finally, in the last section we use the plank problems in order
to get some lower estimates for the norm of the simplest and, in many
cases, the most useful polynomials on Banach spaces which are products
of linear forms. In particular, we derive known inequalities, see [2] and
[6], as simple consequences of the plank problems and we prove some
new results.

Throughout this paper X will be a Banach space over K, where K
is the real or complex field and X* will denote the dual space. The
closed unit ball and the unit sphere will be denoted by Bx and Sx
respectively. A function P : X — K is a continuous n-homogeneous
polynomial if there is a continuous symmetric n-linear form L : X* — K
for which P(z) = L(z,...,z), for all z € X. In this case it is convenient

to write P = L. We define
|P|| = sup{|P(z)|: x € Bx}.

We let P(".X) denote the Banach space of all continuous n-homogeneous
polynomials on X. For general background on polynomials, we refer to

[7].
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2. Plank problems

A plank in a Banach space X is a set of the form
{z e X :|¢(z) —m| <w}

for some continuous linear functional ¢ on the space. If the norm of ¢
is 1, then the relative width of the plank is w and in this case w is said
to be the half-width of the plank.

THEOREM A (K. BALL [3]). If (¢x) is a sequence of linear function-
als, of norm 1, on a Banach space X, (my,) is a sequence of real numbers
and (wyg) is a sequence of positive numbers satisfying

oC
Zwk <1,
k=1

then there is a point x € Bx such that for every k

|#r(z) — me| > wg.

If X is a finite-dimensional space it may be assumed that there are
only finitely many (¢x);_, and it suffices to prove that if

n
w1,
k=1

then there is a point x € Bx such that for every &k

|r(x) — mi| > w.

By slicing the planks into thin “sheets” it may also be assumed that
all the wy are the same, i.e. that each is equal to 1/n. In the special
case in which all my are zero, under the assumption that the width of
each plank is 2/n, the previous Theorem can be stated as follows.

THEOREM B (K. BALL [3]). If X is a finite-dimensional Banach
space and ¢ € Sx-, 1 < k < n, then there is a point x € Bx such that
for every k

S|

|pr ()| >

The condition in Theorem A that the wg add up to 1 is sharp. If X
is the space #1, take ¢, to be the standard basis vectors of the dual /.
However, for a Hilbert space one might expect to be able to improve
upon this condition.
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THEOREM C (K. BALL [4]). Let ()}, be a sequence of norm 1
vectors in a complex Hilbert space (H, (-,-)) and let (tx)}_, be a sequence
of non-negative numbers satisfying

n
Z 2 =1.
k=1
Then there is a unit vector x for which
Kz, zr)| > tr,
for every k.

For the proof of the previous result one can take t; = 1/y/n. Small
modifications are needed to handle the general case, see [4].

It is an interesting fact that the proof of Theorem B for finite-dimen-
sional complex Banach spaces is an easy consequence of the previous
complex plank problem for a Hilbert space.

Proof of Theorem B. We may assume without loss of generality that
(X, || - I}) is an n-dimensional normed space. In 1948 Fritz John [10]
proved that there exists a unique ellipsoid of maximal volume, denoted
by D%**, so that

D$** ¢ Bx C /nDE™.

Therefore, see also theorem 5.6 in [9], there is an inner product (-, -) on
X giving a norm || - ||2 such that for all z € X

(1) lz]| < flzlla < Vn-lz|.
Let ;. € Sx+, 1 <k <mn, that is
|zkllx» = max{|(z, k)| : [|z]| <1} = 1.

By using (1) we have

L = Jlzxllx- = max |(z/[|lz], z)]
< max|jz/lzlllz - zrllz < Vil
Hence
(@) lzklla > 1/v/n,
k=1,...,n. But from Theorem C there exists an z € X, ||z||2 = 1, so
that

[z, z/llzkll2)] = 1/vn,
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k=1,...,n and if we apply (2) we get
1 1
> . > =
(2, zk)| 2 Tn lzkll2 2 ~

Consequently, by using (1) the previous inequality implies
1 1 S 1 1 1

‘<m TE)| >
o) > = I> D=2
]’ Izl »n = llzl2 » =n

For x € Sx+, 1 < k < n, we have shown that there exists an zg € Sy,
xo = x/||z||, such that
I(:L'o,xk>| > l/n.
O

If we use the complex plank problem for a Hilbert space we can prove
a plank problem for complex Ly (1) spaces. For this we need a well known
result due to D. Lewis [13] (see also [16] or [33]):

Let E be an n-dimensional subspace of L,(i), 1 < p < co. For the
Banach- Mazur distance d(E, £5) we have

3) d(E, 05) < nl27o],
In particular, for any n-dimensional Banach space E we have
(4) d(E,43) < Vn,

which is due to F. John [10]. Recall that the Banach-Mazur distance
between two isomorphic Banach spaces X and Y, denoted by d(X,Y),
is defined as

d(X,Y) :=inf{||T|| - |T"Y|: T:X — Yis an isomorphism}.

PROPOSITION 1. Let X be a complex Ly(p) space. If fi, € (Lp(w))*,
1 < k < n, are unit vectors, then there is a point x € Br,(u) such that
for every k

n~UP if1<p<2
() |[fi(2)] 2 { n~Pif2 < p < oo,

11 _
where p+p, 1.

Proof. Because of Theorem A, is enough to consider the case 1 <
p < 0o. But in this case the L,(u) spaces are reflexive and hence there
exist xp € BLp(H) with |fe(zi)l = Ifell = 1, k= 1,...,n. f E =
span{zi,...,Z,}, then E is a subspace of L,(u) of dimension d < n. In
view of (3), there exists an isomorphism T : £ — E such that ||T|| = 1
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and [T~ < dV/2-1/PL 1f g = filg, then |lgi|| = 1 for k =1,...,n.
But from Theorem C, the complex plank problem for Hilbert spaces,
there exists an z € £4, ||z|2 = 1, so that |(gr o T)(z)|/|lgx 0 T||2 > n~1/2.
Therefore,

1 1 lgell 1 1
6)  |ou(T2) > —= gpoTlp> . ol _ L 1
(Tl 2 G llow o Tl > ey = 7 )
Since (|Tz|| < ||T||{|z|l2 = 1, we have shown that for some zg := Tz €
B, () we have

1
| fi(z0)| = lgr(z0)| > — I
nz-dz »
The above inequality proves (5). Observe that the proof is similar for a
d-dimensional Ly(u) space, d < n. O

If we use the distance estimate (4) and work exactly as in the proof
of Proposition 1, then we can prove that Theorem C implies Theorem
B. In fact, for a d-dimensional complex Banach spaces, d < n, we can
improve the estimate given in Theorem B.

COROLLARY 2. Let X be a d-dimensional complex Banach space,
d <n and let fr € Sx*, 1 <k < n. Then, there exists a point x € Bx
such that for every k

) [fel@)] = (- d) V2
Moreover, if X is a d-dimensional complex L,(u) space then
(8) |fe(z)| > n~Y2. g~ 1/2=1/Pl

REMARK 1. If (z1)7_, is a sequence of norm 1 vectors in the complex
Hilbert space ¢4, with d < n, it is plausible that for some unit vector
x the estimate [(z,zi)| > 1/v/n, 1 < k < n, in Theorem C can be
improved. Then of course inequalities (7) and (8) can be substantially
improved.

The following example shows that in general the estimates in (5)
cannot be improved.

EXAMPLE 1. Consider the space £ and the coordinate functionals
e, 1 <k<n UHl<p<2andz= n_l/PZZZI ek, then ||z|, = 1
and ex(z) = n~/P,1 < k < n. On the other hand, if 2 < p < co take
z=n"YP 37  er. Then ||z||, <1 and ex(z) = n~ % 1<k < n.



Plank problems, polarization and Chebyshev constants 163

Although the estimate in Theorem B is true for any real or complex
Banach space, we are not aware of any improvement upon this estimate
for real L,(u) spaces. However, we cannot have the same estimates as
in (5).

EXAMPLE 2. Let z1,...,%9, be unit vectors in the Euclidean space
R? distributed uniformly around the circle and let = be any vector in
the real space 622, , with ||z]l, £ 1. As it has been observed by Pidraig
Kirwan, see p.706 in [27], for the arbitrary unit vector z/|z|2 in the
plane there is an xz, 1 < k < 2n, for which

[z, z/l|2]l2)] < sin(m/2n) < 7/2n.

Hence, there is a unit vector zy/||z ||,y among the unit vectors z1 /|1,
.o, Zan/||z2n |l in the dual space ff), of £2, such that

(e / |zl 2)] < (r/2n0)(2ll2/ lzklly) < (r/2n)2P~2.

Now, this last inequality shows that in general (5) or (8) cannot be true
on any real L,(u) space for n large enough.

3. Polarization and Chebyshev constants

If f1, fo, ..., fn are bounded linear functionals on a Banach space X,
then the product (fifa--- fn)(z) := fi(z)fo(z) - fu(x) is a continuous
n-homogeneous polynomial on X. If || f fa - - - full = supjzy=1 [f1(2) f2(x)
-+« fulz)|, there exists Cy, > 0 such that

WA A2l fnll < Cullfafe- - full-

This inequality was derived by R.A. Ryan and B. Turett (theorem 9 in
[27]) in their study of the strongly exposed points of the predual of the
space of continuous 2-homogeneous polynomials. In [6] it was proved, in
the case of complex Banach spaces, that C, < n™ and the constant n’
is best possible. Since it is possible to improve this estimate for specific
spaces we introduce the following definition (see also [6]).

DEFINITION 1 (Benitez-Sarantopulos-Tonge [6]). The nth (linear) po-
larization constant of a Banach space X is defined by
ca(X): = mf{M>0:|fi]l -l fnl
S M- “fl fn”avfh . >fn S X*}

= 1 . f L .
T Hiﬁgllfl(rv) (@)
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The (linear) polarization constant of a Banach space X is
¢(X) == limsup ¢, (XY™

In contrast, the “general” nth polarization constant K(n, X) of a Ba-
nach space X over K (K = R or C) is defined by

(9) K(n,X) :=inf{M : ||L| < M||P|, YPeP("X)},

where L is the continuous symmetric n-linear form associated to P (in
this definition we consider all continuous n-homogeneous polynomials,
not only products of linear forms). This polarization constant has been
studied in [28] and [29], see also section 1.3 and in particular definition
1.40 in [7].

We can easily see that c¢,(-) and K(n,-) are isometric properties of
Banach spaces. It is useful in our work to record some results on the
nth (linear) polarization constant. First we prove that in Definition
1 “lim sup ¢, (X)/™" can be replaced by “limy_ oo cn(X)Y/™”. For this
we need a known result on quasi-monotone sequences. Recall that a
sequence (a,) is called quasi-monotone if for all m,n € IN

(10) (m + n)am—f—n < Magy, + nay.

It seems that the proof of the following result is due to M. Fekete who
has used it in his classical paper [8] (see p.233). For a proof see also
Part I, Chapter 3, Problem 98 in [26].

LeMMA 3 (M. Fekete [8]). Any quasi-monotone sequence (a,) either
converges to its infimum or diverges to —oo.

PROPOSITION 4. For the polarization constant c¢(X) of a Banach
space X we have
o(X) = lim ep(X)M7,

n—oo
where the limit could also be oo.

Proof. Let € > 0 and let m,n € N. By Definition 1, there exist
firgk € Sx+,1<j<m, 1<k <n,so that

12 (em (X) = llfr-fmll, 12 (ca(X) =€) llgr---gnl.

But then, by using once more Definition 1 and the fact that the norm
of the product of two homogeneous polynomials is always less or equal
the product of their norms, we have

(Cmen (X)) < 1o - g1 gall S If1-+- Finll - llgn - gnl
< ((em (X) =€) (cn (X) — €))7
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This last inequality is true for any € > 0 and therefore

Cmtn(X) 2 em(X)en(X).

1/k

By taking ax := —Incg(X)/*, we finally have

(m + n)amsn < May + nay,

and the proof follows by Lemma, 3. O

If K(X) := limsup K(n, X)'/" is the “general” polarization constant
of a Banach space X, see also definition 1.40 in [7], in view of the previous
result it is natural to ask.

QUESTION 2. IsK(X) = lim, oo K(n, X)!/*, where X is any Banach
space?

We can easily see that ¢, (X/M) < ¢,(X), for any quotient X/M of
X. For subspaces of X we have the following result, see lemma 11 in [6]
which is similar to lemma 1.46 in [7].

LEMMA 5 (Benftez- Sarantopoulos- Tonge [6]). IfY is a closed sub-
space of a Banach space X and P is a bounded projection of X onto Y,
then

en(Y) < |1P["en(X).
In particular, if Y is 1-complemented subspace of X then
en(Y) < e (X).

The Banach-Mazur distance between two isomorphic Banach spaces
can be used in order to get estimates for the n-th polarization constants
(see lemma 12 in [6]).

LEMMA 6 (Benitez- Sarantopoulos- Tonge [6]). If Xy and Xy are
isomorphic Banach spaces, then

Cn(Xl) < dn(Xl, Xg)cn(XQ).

For each n € IN, infinite dimensional Hilbert spaces have the smallest
n-th polarization constant. To see this we use the fundamental theorem
of Dvoretzky which states that every infinite dimensional Banach space
X contains for each n € IN and € > 0 an n-dimensional subspace E such
that d(F,€3) < 1+ e For a simplified proof we refer to [23] or [25].
By duality, see also p.42 in [25], a similar statement holds for quotient
spaces of X:

LeEmMMA 7 (Dvoretzky’s Theorem). Every infinite dimensional Banach
space X contains for each n € IN and ¢ > 0 an n-dimensional quotient
space E such that d(E,{3) <1+e.
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We are grateful to V. M. Kadets [11] for calling our attention on
this dual version of Dvoretzky’s Theorem and thus suggesting the right
approach in giving a short proof of the following result.

ProposSITION 8. If X is an infinite dimensional Banach space, then
(11) en(X) > en(fy),¥n € IN.

Proof. Fix n € IN. By the previous Lemma, for every ¢ > 0 there
exists an n-dimensional quotient space E of X with d(E,¢5) < 1+e.
Since ¢,(F) < ¢,(X), an application of Lemma 6 yields

en(f3) < (L4 €)"cn(E) < (14 €)"cn(X).
But this is true for any € > 0 and the proof follows. J

The next theorem, for complex Banach spaces, is just a restatement
of corollary 4 and proposition 6 in [6]. However, the first part of the
theorem for real or complex Banach spaces follows immediately from
Theorem A, too.

THEOREM 9. (a) If X is any Banach space, then c,(X) < n". In
particular, if dim(Li(p)) > n then c,(Li(p)) = n™.

(b) If X is a complex Banach space with c,(X) = n™, then X contains
(1 + €)-isomorphic copies of £} for all € > 0. Moreover, if X has
dimension n, then c,(X) = n" if and only if X is isometrically
isomorphic to ¢}. In this case, the only fi, € Sx« (1 < k < n)
which satisfy

inf su z) - folz)] = n"
froL s Sup M2(@) - Ju(@)

are the coordinate functionals.

REMARK 2. Part (a) of the theorem was proved in [6] for complex
Banach spaces. However, in the real case the previous theorem was
proved only in the special case n = 2 (see proposition 14 in [6]). It is an
open question as to whether or not part (b) of the theorem holds true
for real Banach spaces of dimension n, n > 3.

If H is a Hilbert space, in [6] was conjectured that c,(H) = n™/2. By
using the relation between complex gaussian variables and the perma-
nent, J. Arias-de-Reyna [2] has proved this conjecture only for complex
Hilbert spaces. We refer to [22] for a summary on the theory of perma-
nents of square matrices, especially with regard to inequalities satisfied
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by the permanent. The key in J. Arias’ proof is an inequality on per-
manents due to E. H. Lieb [14] (see also [15] for some other matrix
inequalities). In turn, Lieb’s inequality generalizes the permanent ana-
logue of the Hadamard determinant theorem due to M. Marcus [18],
see also [19] and [21]. It is interesting that the following theorem, due
to J. Arias-de-Reyna [2], is a corollary of Theorem C, that is K. Ball’s
complex plank problem [4].

THEOREM 10 (J.Arias-de-Reyna [2]). If (H,{-,-)) is a complex Hilbert
space, then c,(H) < n™2. In other words, if zr € H, 1 < k < n, are
unit vectors then

sup |<£L‘,ZE1> e <m7$n>| 2 n—n/? .
flzl|=1

If dim(H) > n, then c,(H) = n"/2.

In view of Example 2, we don’t have a similar result as in Theorem C
for real Hilbert spaces. However, the previous result could be true for real
Hilbert spaces as well. A first approach in trying to tackle this problem
is to use the best possible estimate we have for complex Hilbert spaces.
This way we can give an upper estimate for ¢,(H), where H is a real
Hilbert space, which is better than n". For this, consider the complex
Hilbert space H = H @iH, with norm ||z +iy|| := +/||z||? + ||v||?, which
is the natural complexification of H. If Pe P("I:T ) is the unique complex
extension of the n-homogeneous polynomial P(z) := (z,z1) - {x,Zn)
defined on H., it is known (see [24] or [30]) that ||P| = SUP)||ziy||=1 |P(z+

iy)| < 2v=2/2||P||. But since ||[P|| > n~™2, we finally have ||P| >
2(2n)~™/? which is better than the estimate (4n)~"/2 given in [2].
COROLLARY 11. For the n-th polarization constant of a real Hilbert
space H we have the estimate
Cn(H) < 2n/2—1 . ,nn/2.
If H is any real or complex Hilbert space of dimension at least n, then
en(H) > 02,

For the lower estimate in the previous inequality simply we have to
take n orthonormal vectors in the Hilbert space. Now we are in a position
to give a first account on the order of magnitude of the polarization
constants.

THEOREM 12. Let X be a real or complex Banach space. Then
¢(X) = o if and only if dim(X) = oc.
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Proof. If dim(X) = oo, an application of Proposition 8 and Corollary
11 yields ¢, (X)Y™ > ¢, (£3)/™ > n1/2| for all n € IN. Therefore, ¢(X) =
00.

Now we have to show that if X is a finite dimensional Banach space,
say dim(X) = m, then X must have finite polarization constant c(X).
For this, first of all observe that if d(X, ¢3') = d, with d < /m, Lemma
6 can be used to obtain

en(X) < dep (6F1).

Hence, it suffices to show that c,(£3')!/" remains bounded as n — oo.
Let z1,...,z, be n arbitrary unit vectors in £5*. Since we need to find
a lower estimate for max|z),=1 Y gy In [z, z1)|, we shall use averaging
over the unit sphere of ¢3*, that is we shall integrate with respect to the
normalized surface measure do of Sggz. Notice that

Clm)i= [ Inl(z,zu)ldoo),
Sl’gl
is independent of the choice of the unit vector z;. Therefore,
C(m) :/ In|(x,e1)| do(z).
Sepe
We have
n n
max S In|(z, z)| > / S In|{z, 28| do(z) = nC(m),
lellz=1 =] s

@ k=1

which implies maxg,—1 [Tp—; [(z,zx)| > e"C(m), We have shown that
cn(£) < €™M and hence c(€]') < e=¢(™ < co. This concludes our
proof. O

REMARK 3. In fact, the above proof can be elaborated to show
c(H) = e=¢(™) where H is an m-dimensional Hilbert space. To this
and other related results we shall return later.

Here is a different approach in trying to estimate the n-th polarization
constant of an arbitrary real Hilbert space. First of all a perturbation
argument, which was communicated to us by A. M. Tonge [31], yields
the following result. We spare the reader the details.

LEmMA 13. Let (H,(-,-)) be a Hilbert space and let a € H, 1 < k <
n, be unit vectors. If for some unit vector § € H we have sup) =1 [(, a1)
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s <£E,G/n>l = l(é"al) K an>|’ then

nE = g 0
<€7(11> <£7a’n> ‘
To find a lower estimate for the supj,—; [(z,a1) - (z,an)| = [{§, a1)
-+ (£, an)|, without loss of generality we can take a1, . .., a, to be linearly

independent in the Euclidean space H = R". If £ = &1a1 + -+ + &nan,
then we have ||§1a; + -+« + €pap]|2 = 1 and from the previous Lemma
§1<§7a1> == €n<€) an) = 1/”
Hence
. 1 1 1 1
(12) |<€,(L1> e <€aan>| = ﬁ ’

&l ~ W G )R

Consider the quadratic form
n

(13) q(z) = w101+ + zpanl = D (@i, 05)ziz;

ij=1
where * = z7a1 + -+ + Tpay is chosen so that g(x) = 1. (Hence the
quadratic form is symmetric and positive definite.) To find the extreme
values of f(x) := 23 + -+ + 22 subject to the side condition g(z) = 0,
where g(z) = g(z) — 1, we use the method of Lagrange multipliers. Since
f and q are homogeneous polynomials of degree 2, we can apply Euler’s
identity to obtain

(14) tVf(z) - Vq(z) =0,

where t = 1/f(z). The vector equation (14) then leads to the charac-
teristic equation of the quadratic form (13). Let ty,...,t, be the roots
of the characteristic equation, i.e. the eigenvalues of the Gram matrix
A = [{a;,a5)],4,5 = 1,2,...,n. Note that ¢1,...,¢, must be real and
positive. If ¢; is the smallest eigenvalue, then f(z) < 1/t;. Therefore,
by using (12) we finally get

sup |(z, a1) -+ (2, an)| = [(€,01) -+ (€, an)| 2 (t1/m)".

lzll2=1

Thus, we have shown the following result which was communicated to
us by M. Marcus {20] in 1996.

PROPOSITION 14 (M. Marcus [20]). If a1,0a2,...,a, are unit vectors
in the Euclidean space R", then

sup l<1"’ CL1> T (x,an)] 2> (tl/n)n/2 )
[|zif2=1
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where t; is the smallest eigenvalue of the Gram matrix A = [(a;, a5)], %, j
=12,...,n.

It is an easy but a tedious calculus exercise to show that for small
values of n in the Euclidean space R™ we have the same nth polarization

constant “n™?2” as in the case of complex Hilbert spaces.

ProrosiTION 15. Let aq,...,a, be unit vectors in the Euclidean
space R"*, n = 2,3,4. Then

sup [{z,a1)---(x,an)| > n~"/2,
llzlla=1

Moreover, equality occurs if and only if the vectors ai,...,a, are or-
thonormal.

CONJECTURE. Let a1,...,a, be (linearly independent) unit vectors
in R™. Then,

sup |(z,a1) - (z,a0)| 2 n"/2,
Jzl=1

with equality if and only if the vectors are orthonormal. That is, for the
real space {3 we have
en(£3) = n™2.
Concerning the n-th polarization constant of complex Ly(u) spaces,
the first part of the following result is a direct consequence of inequalities
(5) in Proposition 1.

PROPOSITION 16. For a complex L,(u) space we have
nP if1<p<?2
< , -5 =
where 1—1) + ﬁ—, = 1. If dim(Lp(x)) > n, then for 1 < p < 2 the constant
“n/P? in (15) is best possible.
Proof. We need to prove the last part and for this is enough to con-

sider the space £, withm > n. If z = (xj);-":l €y and eg, 1 <k <,
are the first n coordinate functionals, then

le1(@) - en(@)] = |or--@al = (leal? -+ |2a)P

P... p\"/P
< (BBl <y,
n

by the arithmetic-geometric mean inequality. Thus |1 - - e[| < n~ /P

and since by Proposition 1 the reverse inequality holds the proof follows.
0



Plank problems, polarization and Chebyshev constants 171

Observe that for the complex space fg , d < n, inequality (8) implies
(16) Cn(fg) < /2. gin/2=n/pl

REMARK 4. The upper estimate in (15) for 2 < p < oo can be
improved . For instance consider the complex space £2,. As we shall see
in Proposition 18, we have c,(f%) = 2"!. In particular c2(¢%) = 2,
while by (15) or (16) we have the estimate c2(¢2)) < 22 = 4.

Up to now we have estimated the n-th polarization constant of any
real or complex Lj(p) space and any complex Lp(p) space, 1 <p < 2,in
the case where dim(Lp(t)) > n. In the rest of this work we find the n-th
polarization constant of the complex space Zﬁl, even in the case n > d, the
two dimensional complez C(K) space and the two dimensional real or
complex Hilbert space. To find cn(é‘li) we need the following inequality
for norms of products of polynomials on complex Banach spaces (see
theorem 3 in [6]):

Let P; be continuous homogeneous polynomials of degree k; on a
complex Banach space X, 1 < j < n. Then

(ky+---+ kn)k1+~-+kn
kllﬂ . kﬁn
If fr € (69)* = €4, 1 <k <n, then | fil| = | fr(es)| for some i, 1 <i < d.

But then the previous inequality and example 1 in [6] yield the following
result.

(17) 1Pl - - [ Pul <

1Py Pall

PROPOSITION 17. The nth polarization constant of the complex space
0 is
n d-1

cn(f) =  max L <_n xa
LSS P k kqg H n+l
k1+-~-+kd:n 1,.. d =TI=
k;>0 kl kd =0 [ d ]

In particular, if n = m - d, then ¢, (£¢) = d*. Consequently, c(¢$) = d.

As a result of inequality (7), observe that for any d-dimensional com-
plex Banach space X we have

ea(X) < (d-n)"/2,

where d < n.

In the classical case of polynomials Pi,..., P, of one complex vari-
able, A. Kroé and I. Pritsker [12] have improved early results of A. O.
Gel’fond and K. Mahler [17] and they have shown the following sharp
inequality

1Plloo 1 Pmlloo <27 1PL- Pralloo
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where deg(P1 -+ Pp) =n and | - |l denotes sup-norm. In particular, if
m =n and Py(z) = axz + by, ax, by € C, then

n n
(18) Hgllg)lclakz+bk| < 2”_1-|I§1|§)1<H |lak2 + bl
k=1"" T k=1

If f € (£2.)" = £2, 1 < k < n, where £% is the space C? with sup-
norm, by using the maximum modulus principle the previous inequality
implies

IFl - W fall <2770 (11 fall.

The constant “2"~!” is best possible. Hence

PROPOSITION 18. The nth polarization constant of the complex space
2 s

cn(£2

o0

) — 27’1,—1'

The problem of finding the nth polarization constants of the 2-dimen-
sional real and complex Hilbert spaces is related to the nth Chebyshev
constants of the spheres of R? and R? respectively.

DEFINITION 2. The nth Chebyshev constant of a compact set K on a
normed space (X, || - ||) is defined by

1y-esYn

Mn(K) = inf _suplly—willlly — vl lly — uall.
EKyEK

The fact that M, (S') = 2, where S* = {(z,y) € R? : 22 + y? = 1},
is well-known and easy to obtain. On the other hand, the explicit value
of M,(S?), where 5% = {(z,y,2) € R® : 22 + 92 + 22 = 1}, is not
known. However, G. Wagner [32] has proved that there exist constants
c1, ¢ > 0, so that

1 < log M, (8?) — (n/2) log (4/€) < ca.

Here is a summary of the estimates for the polarization constants of
% which have been derived in [1].

PROPOSITION 19 (V. Anagnostopoulos- Sz. Révész [1]). For the real
space £3 we have

cn(@) = = 2n—l ’

and so c(£3) = 2.
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PROPOSITION 20 (V. Anagnostopoulos- Sz. Révész [1]). For the com-

plez space £3 we have
271
en(f3) = —— .
n( 2) Mn(s2>
Hence, for the complex space Eg there exist absolute constants ¢ and C,
0 <ec< C <o, sothat

c(vVe)" < ea(f3) < C(Ve)™.
Therefore, c({3) = /e.
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