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SPECTRAL THEORY, TENSOR PRODUCTS
AND INFINITE DIMENSIONAL HOLOMORPHY

SEAN DINEEN

ABSTRACT. In this expository article we survey some recent devel-
opments on the construction of a holomorphic functional calculus
for an infinite number of elements in a commutative unital Banach
algebra.

1. Joint spectrum of a finite set of elements

Our general references for spectral theory are [2, 13|, for tensor prod-
ucts [4] and for infinite dimensional holomorphy [5, 13].

An n-dimensional functional calculus consists in assigning to each n-
tuple a of elements from a complex unital Banach algebra A a subset
o(a) of C™ and constructing an algebra homomorphism 6,

(1) 0, : H(o(a)) — A
such that

(2) o(6a(f)) = flo(a))
for all f in H(c(a)) and

3) 0a(2) = a;

where z] is the it" coordinate evaluation mapping on C™, 1 <i < n.

We call o(a) the spectrum or joint spectrum of a while H(o(a)) is the
space of holomorphic germs on o(a). Many different spectra have been
defined over the last sixty years but we confine ourselves in this survey
to the classical definition given below and developed in the 1950’s by R.
Arens and A. P. Calderén [1], G. E. Shilov [15] and L. Waelbroeck [16] for
n-tuples in a commutative unital Banach algebra and to generalizations
of this theory to infinite sets of elements.
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From now on A will denote a commutative complex Banach alge-
bra with identity 1 and set of non-zero multiplicative linear functionals,
S(A), and 6, will denote a homomorphism which implements a func-

tional calculus. Let a = (a4, ...,a,) denote an n-tuple of elements from
A. We let

(4) o(a) = {(k(a1),. .., h(an)) : h € S(A)}

and call o(a) the joint spectrum of (ai,...,a,). The set o(a) is a non-

empty compact subset of C™. An alternative equivalent definition using
invertibility has the following form. A point (\1,...,\,) is not in o(a)
if and only if there exists (b;);-.; C A such that

n

(5) Zbi(ai - )\11) =1.

=1

If K is a compact subset of a Banach space X let H(K) = (xy H(U)
/ ~ where U ranges over all open subsets of X containing K, H(U) is
the space of holomorphic mappings from U into C' and f ~ g if there
exists an open set W on which both f and g are defined and coin-
cide. Elements of H(K) are called holomorphic germs on K. We obtain
the same set of germs on replacing each H(U) by the Banach space
H>®U) = {f € H(U) : ||fllv < oc}. For U an open subset of X we
let 7, denote the Nachbin topology [5] on H(U). We let (H(K), ) :=
limgcy(HU),7,) = limgcy H®(U). We may also endow each H(U)
with the compact open topology 73 and obtain a further locally convex
topology on H(K), which we also denote by 7y, limg -y (H(U), 10). We
have 7, = 7y if and only if X is a finite dimensional Banach space.

We now briefly mention some further properties of the homomor-
phism 6,. We first remark that 8, is a continuous mapping and by (1)

and (3) we have for a = (aq,...,a,) and any polynomial
(6) Oo(Yama™ -2 = 3 - al
m m
where m := (my,...,m,) is an n-tuples of non-negative integers and the

summation is over a finite set. Since the polynomials may not form a
dense subalgebra of H(o(a)) the Hahn-Banach Theorem cannot be used
to show that there is a unique homomorphism satisfying (1), (2) and
(3). L. Waelbroeck [16, 17] showed, however, that the correspondence
a — 0, is the unique system on all finite tuples from A satisfying
(1), (2), (3) and the following condition: if T': C* — C™ is a linear
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mapping then

(7) Oa(foT) = 0T(a)(f)

for all f € H(o(T(a))). In 1979 W. B. Zame [19] showed, using results
from several complex variables, that there is precisely one homomor-
phism satisfying (1), (2), and (3).

The mapping , commutes with each h € S(.A) in the following sense:
if f e H(K) and a = (ay,...,a,) then

(8) h(Ba(f)) = f(h(a1), ..., h(an)).

This gives the holomorphic spectral mapping theorem o(6,(f)) =
f(o(a)).

2. Waelbroeck’s joint spectrum for an infinite set of ele-
ments

L. Waelbroeck [17] in 1971 was the first to consider the joint spectrum
of an infinite set of elements in a way that led to a functional calculus
for norm continuous holomorphic germs. To do so he used the projective

tensor product of Banach spaces. The projective or = norm on the tensor
product of normed linear spaces X and Y is defined by letting

k k
16l = inf () lleall - luill; 6 = Y 2 @ i)
i=1 i=1

If X and Y are Banach spacesand 8 € X @Y, the completion of X ®,Y,
™
then

16]1x = inf (D lzll - llwill; 0 = D @i ® i}
i=1 i=1

If X is a Banach space, /.ﬁl is a commutative unital Banach algebra
anda=73 > ap ® z, € AQX, Waelbroeck let
7l‘

(9) o(a) = {D_ h(an)zn; h € S(A)}.
n=1
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To see that this extends the definition in the previous section we note
that A" ~ A ® C™ where the identification is given by

n
a= (a17"'aan) - Zai®ei
i=1
where (e;)7_; is the standard unit vector basis for C®. We then identify
(h(a1),...,h(an)) with 3" ; h(a;)e; and obtain the finite dimensional
joint spectrum. A more transparent representation, which lends itself to
generalization, is obtained by using uniform tensor norms.
If X and Y are normed linear spaces let £(X;Y) denote the space
of continuous linear mappings from X into Y endowed with the norm
IT|| := sup{||Tz|ly : |zllx < 1}. f Y = C we write X’ in place of

L(X;C).
A uniform cross — norm or tensor norm <y is a method of assigning
to each pair of normed linear spaces a norm || - ||, on X @Y such that

XQ.,Y =(XQY,| - |ly) has the following properties;
(a) lz®ylly ==l - |ly|l forallz € X,y €Y,
(b) if X; and Y;,7 = 1,2 are normed linear spaces and 7; € £(X;,Y;),
1= 1,2thenT; Ty € E(Xl ®X2;Y1 ®Y2) and ||T1 &® T2” <
T3] - | T2]} (71 ® T3 is the unique linear mapping from X; & X2
into Y7 @ Y: satisfying

Ty @ To(zy @ x2) = Ti(z1) ® To(xe)
for all z; € X; and x5 € X3).

Since each h € S(A) has norm 1 and the projective norm is uniform we
can rewrite (9) as

(10) ol@a)={(h®1lx)(a): he S(A)}

where 1x denote the identity mapping on X. Equation (10) shows that
(9) is well defined-that is it does not depend on the tensor representation
- and we take (10) as our definition of the spectrum of a for any a €

AQX (the completion of X )., V) where v is any uniform cross norm

¥
(see [6] for details). The spectrum o(a) is a non-empty compact subset
of {z € X; lall < [} N

Waelbroeck [17] defined 6,(f), a € AQX, by considering in turn

iy
the cases where f was (a) a polynomial (b) a holomorphic function of

bounded type on an open ball (¢) a holomorphic function on a product
domain and (d) the pullback of a holomorphic function on a product do-
main. In this way he constructed a 7,-continuous functional calculus for
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fa,a € A@X , which satisfied and was uniquely determined by (1), (2),
v

(3) and (7). Subsequently his results were extended in various directions
by M. Chidami [3], M. C. Matos [10, 11| and J. M. Ortega [14]. J. M.
Gale [9] showed that (1), (2) and (3) determined the restriction of 6,
to the holomorphic germs which are weakly uniformly continuous on a
neighbourhood of o(a). In a set of three papers [6, 7, 8] the authors con-
sidered the general/l)roblem of constructing the holomorphic functional

calculus for a € AQX and addressed the problem of 79 continuity and

5
uniqueness. In the following section we discuss the main result from [8]
and highlight some aspects of this result which the technicalities in {8]
tended to hide.

3. Recent extensions of the holomorphic functional calculus

To state the main result in [8] we require some definitions and, at
the same time, we discuss an extension property which, for a large class
of Banach spaces, turns out to be both necessary and sufficient for the
existence of a unique 7 continuous holomorphic functional calculus.

For Banach spaces X and Y and n a positive integer let P("X;Y)
denote the space of all continuous n-homogeneous polynomials from X

v
into Y [5]. If P € P("X;Y) we let P denote the unique symmetric
n-linear form associated with P. Given P € P("X;Y),X,Y Banach
spaces and A a commutative unital Banach algebra consider the 2n-
linear mapping

L: A"x X" — AQY
v
L{ay,...,an,%1,-..,Tp) = aj---an® Pz1,...,z,).

The definition of tensor product and associativity imply that there exists
a unique symmetric n-mapping L; : (A® X)" — A ® Y such that

v
Li(a1®z1,...,0nQ@%y) = a1+ 0y, ®P(x1,...,z,) fora; € Aand z; € X
all ¢. We denote by P4 the n-homogeneous polynomial associated with
Ly. Clearly Po(a ® ) = a" ® P(x) where a € A and =z € X. If we
identify X with 1 ® X then we may regard P4 as an extension of P.
If v is a uniform cross-norm then P4 admits an extension (which is
necessarily unique) to A ®X to define an element of

P("(A®,X); AR, Y)
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if and only if

sup ||P4(a)]l < oo.
acA®X
llall, <1
A polynomial is a finite sum of homogeneous polynomials and if P :=
> i=0Pj € P(X;Y), (the space of continuous polynomials from X to
Y),PeP(X;Y),0<j<nwelet Pqg= Z?:o (Pj) 4 - The mapping
P — P4 is linear and an algebra homomorphism when the range space
Y is a Banach algebra. If X is a Banach space with Schauder basis (e;);
and P € P (X) then we have the monomial expansions

P (i z¢e¢> = ;amzm

i=1

and
oo
Py <Zaz &® 61') = Zamam.
i=1 m

in the following cases

(a) X =11,7=m and A a commutative unital Banach algebra,

(b) X = ¢g,7 = € and A a quotient of a unital uniform Banach
algebra.

In case (b) the series is generally only conditionally convergent and a
special ordering is necessary, we refer to [5, 7] for details. In the above
expansion a™ = a;™ - -- ;™ for m := (my,...,my) € Nt,

If A is a commutative unital Banach algebra and 7 is a uniform
crossnorm we say that the Banach space X has the (A, v)-extension
property if all P € P(X) can be extended to A ®,X and there exists
¢ > 0 such that

(11) [Pall < ™ [P

for all P € P("X) and all n.

A positive real number ¢ which satisfies (11) is called a (A, v)-exten-
sion constant for X. All extension constants ¢ are greater than or equal
to 1 and [7, Example 10] shows that we may require ¢ > 1.

Results in (7] show that any Banach space X has the (A, 7)-extension
property for any Banach algebra A and the (U, £)-extension property for
any uniform algebra U (e as usual denotes the injective tensor norm).
The (A, v)-extension property places uniform bounds on the norms of
polynomial extensions and may be rephrased as a holomorphic extension.
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If U is an open subset of a Banach space X, f € H(U) and g € U
then there exists a sequence (P, )., of polynomials, P, € P ("X) all n,
and § > 0 such that

(12) fl@o+y) = Paly)
n=0

for all y € X for which ||y|| < 6. The sequence (P,),-, is uniquely
determined by f and zy and we use the notation
d" f (o)

Pyi= =20
n:

for all n. The expansion (12) is called the Taylor series expansion of f
about zg.

Let Hp (U) denote the subspace of H (U) consisting of all holomorphic
mappings which are bounded on the bounded subsets of X which lie
strictly inside U. Endowed with the topology 7, of uniform convergence
on these sets H; (U) is a Fréchet space. If U is an open subset of a finite-
dimensional space then (H (U),7,) = (H(U),7) is a Fréchet nuclear
space.

ProrosiTION 1. If A is a commutative unital Banach algebra, v is
a uniform crossnorm, X is a Banach space and each P € P(X) can be
extended to A ®,X then X has the (A,~)-extension property if and
only if for each f := )72 P, € Hy(X) we have fq:= > 00 ((Po)4 €
Hb (A ®7X) .

Proof. Since f =Y 22 ) P, € Hp(X) if and only if

n=0

lim sup || P, ||Y/™ = 0
n—o0
it is immediate that f4 € Hy (A &y X ) when X has the (A, v)-extension
property.
Conversely suppose f4 € Hp (.A &, X ) whenever f € Hy(X). If
a— $=1a¢®xi €A®X and P € P(™X) then

_ ntyY o
(13) Pa@) = Y “Pw)a
[m|=n
meN?
where @™ = a;™ ---a,"™ when m := (m1,...,m;) € N:. Hence the
mapping

PeP(X) — [|Pa@)]
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defines a continuous semi-norm on (P (" X), ||.||). Since each P € P ("X)
can be extended to A ®,X, ||P4ll = supacasx |Pa(d)|| < oo, and as
lall<1

(P ("X),|l.]]) is a Banach space, P — ||P4|| defines a continuous semi-
norm on P ("X). Let B.(X) = {z € X : |jz|| < r}. Since (Hp(X), ) is
a Fréchet space

o | jn
f— MWfallly = Y | £
n=0 ' B,(X)

defines a continuous semi-norm on H(X). Hence there exists M > 0
and ¢ > 0 such that

I £alll < M| £1lle
for all f € Hy(X). If f = P € P("X) this implies

IPall < M| Pl g, xy = Mc™ || P

and X satisfies the (A, v)-extension property. This completes the proof.
a

A Banach space X has the bounded (respectively bounded projec-
tion) approximation property if there exists a bounded net (74,),, Ts €
L (X, X) of finite rank operators (respectively finite rank projections),
that is To(X) is finite-dimensional for all «, such that T,, — Ix uni-
formly on compact subsets of X as & — 0o. The bounded projection
approximation property is strictly stronger than the bounded approxi-
mation property but since a separable Banach space has the bounded
approximation property if and only if it is isomorphic to a complemented
subspace of a Banach space with a Schauder basis we see that a sepa-
rable Banach space is a complemented subspace of a Banach space with
the bounded approximation property if and only if it is a complemented
subspace of a Banach space with the bounded projection approximation
property.

We are now in a position to state the main result from [8].

THEOREM 2. If A is a commutative unital Banach algebra, 7y is a
uniform crossnorm and X is a Banach space with the (A,~)-extension
property then for each a € A ®7X there exists a continuous homomor-
phism

0a: (H(o(a)),m0) — A
such that for all h € S(A), f e H(o (a)), P € P(X) and z' € X'

(14) h(0a(f)) = f([h® Ix](a)),
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(15) 0a(P) = Pa(a)
and
(16) fa(z') = [La®2'] (a) = &' (a).

Moreover, if X is a complemented subspace of a Banach space with the
bounded projection approximation property and the (A,~y)-extension
property then

(a) 8, is the unique Tp-continuous homomorphism from H (o (a)) into
A satisfying (14) and (16);

(b) 6, is the unique 7y-continuous homomorphism from 'H (o (a)) into
A satisfying (14) and (15).

The existence of a 1y continuous functional calculus for arbitrary X
is established in four stages and it is necessary to establish uniqueness
in each of the first three stages in order to obtain existence at the final
stage. However, the stronger results in (a) for the more restrictive class
of Banach spaces avoids the most difficult technical step (the final one)
in this general programme. We confine ourselves to a discussion of this
case. We begin, however, by showing that the (A, y)-extension property
is necessary in order to obtain a 7 continuous functional calculus when
the Banach space X has the bounded approximation property. We use
the notation of Theorem 2.

ProrosiTioN 3. If X has the bounded approximation property and
forallae A ®7X there exists a Ty continuous homomorphism R, from
H(o(a)) into A which satisfies

(17) Ra(z') = [La® 2] (a) = 2’ a(a).
then X has the (A, y)-extension property.

Proof. If T : X — X is a finite rank operator and P € P(X) then
P o T lies in the algebra generated by all ' € X'. If R, satisfies (16)
then Ry (PoT) = (PoT),(a) = Pa(Ta(a)) for alla € A ®,X. Let
(Ty),, denote a bounded net of finite rank operators from X to X which
converges to the identity on compact subsets of X. Let U denote a
bounded neighbourhood of o (a). Since R, is 7p-continuous there exists
a compact subset K of U and C' > 0 such that ||Ra(P)|| < C||P||, for
all P € P(X). Hence

P4 ((Ta)a (a)) = Ra(P)|| < C||PoTa = Pllg — 0

as @ — o0o. Hence the mapping PA:ac A ®yX — Ra(P) is the
pointwise limit of a bounded net of polynomials of bounded degree on
the Banach space A ®,X and P4 € P (A ®,X).
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IfPcP("X)anda=Y"_ 2 ®z; € A® X then
n! Vv
Pa((To)a(@) = ) —P(Ta(2)™) a™ — Pa(a)
jml=n
meN?
as a — co. Hence PA(a) = Py(a) for all a € A® X. Hence, each
P € P(X) can be extended to A ®,X, and

PA(a) = P4(a) = Ra(P).

This shows that R, satisfies (15).

We now show that X has the (A,~)-extension property. If a €
A ®,X then o(a) C {z:|z| <|a||}. Since Ra is To-continuous, our
analysis so far shows that for all a € A ®,X there exists c(a) > 0 such
that for every polynomial P € P(X)

(18) IPA@ < c(a) 1Pl cx)-

Hence for alla € A ®,X, [lal| =1, all n and all P € P ("X)
(19) [Pa(a)ll < c(a)2™ || P -

For ¢ > 0 let

Ve = {ac A&, X :|Pa@)ll <" |IP]]all"
foralln and all P € P("X)}.

By (19), Us_,Vim = A®,X. If a; € V;, for all j and a; — a as
Jj — oo then for each P € P ("X)

[Pa(@)ll = lim [[Pa(a;)] < lim m™||P||[la;]|" = m™ || Pl |al|"
j—00 j—00
and a € V,,. Hence each V,, is closed. By the Baire category the-
orem there exists mg such that V;,, has non-empty interior. If ag +

Bs (A ©,X) C Vi, then, since Vi, is balanced, [5, Lemma 1.10 (a)]
implies Bs (A ®yX) C Vi, If ||a|| < 6 then

1 Pa@)|] < mg || P ||al|™

and ||P4|l < m§||P|| for all n and all P € P("X). Hence X has the
(A, v)-extension property. O

We now discuss the construction of 6, when a € A ®,X and X has
the bounded approximation property. If (F,), is a bounded null net in
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(P(™X), Ill) and € > 0O then the (A, ~)-extension property and Lemma
1.10(c) in [5], which says

Pa) ~ P& < o+ )" 2 =yl 1P

whenever P € P("X), |lyll < € and ||z — y|| < 1, allow us to choose
b=3Y"_,b®w € A® X such that for all «

(20) sub |(Pa) 4 @) = (Pa) 4 B)] < 2
By (13)
(21) (Bab)= Y P
jm|=n
meN?

Let K denote the closed convex hull of the set A := {ws,...,w}.
Since A is finite K is a compact subset of X. By the Polarization
Formula

(22) (Pum)] < ™ Pally

for all @ and m. Hence (FP,) 4 (b) — 0 as o — oo and combining this
with (20) we see that 0, (P,) = (Pa)4(@) — 0 as o — oo. If cis
an (A4, v)-extension constant for X and r > c||a|| then the above can be
combined with Propositions 3.34(c) and 3.36(a) in [5] and the estimates
in Proposition 1 to show that for f =3 ", Pn € Hs(Br(X))

oo
fala) =" () 4 (a) € A

n=0
and the mapping 6, : f € Hp (Br(X)) — fa(a) € A is continuous
with respect to the Fréchet topology on Hy (By) and with respect to the
compact open topology on bounded sets. Since the algebra generated
by X' is 79 dense in P(X) and P(X) is 7, dense in H; (B(X)) the
ideas in the proof of Proposition 3 can be modified to show that 8, is
the unique homomorphism from H, (B, (X)) into A satisfying 6,(z') =
la®2'|(a) = 24 (a) for all 2’ € X’ with these continuity properties
when X has the bounded approximation property.

The next extension of 8, is given in the following lemma. We sketch

some points in the proof.

LEMMA 4. Suppose X = X @ X2, has the (A, ) extension property
with extension constant ¢ and dim(X;) < oo. Let a = ajy @ ay where
a €A ®7X1 and a3 € A ®7X2. If U is an open neighbourhood of
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o(a1) in X1 and Uy = B,(X3) where r > c||az|| then there exists a
unique continuous homomorphism

Oa: Hp(U1 @ U2) — A
such that

1. h(0a(f) = f([h® Ix](a)) forallh € M (A) and f € Hy(U1 ®Us)

2. 6, is continuous on each bounded subset of Hy, (U1 & Us) endowed
with the compact open topology,

3. Oa(z") =[la®2'] (@) = 2/4 (a) for all ' € X".

Proof. If Uy is an open subset of a finite-dimensional Banach space
X1, Us is an open subset of a Banach space Xy then the mapping

T:H(U;) ®«Hp (Usg) — My (U & Us)

[T(f ®9)] (z,w) = f(z)g(w) (for f € Hp(U1), g € Hp(U2), 2 € Us
and w € Us) extends to define a linear and algebraic isomorphism (the
product is given on elementary tensors by (f1 ® g1) - (fo® g2) := fifo ®
9192)-

Let 6,, denote the unique continuous homomorphism : H (U;) — A
obtained from the finite dimensional holomorphic functional calculus
(see section 1) and let 6,, denote the continuous homomorphism 6,,
from H; (Uz) into A constructed above. The homomorphism a is defined
by letting

0a = [a; ® Oa,] o T L Hy (U1 @ Up) — A.

Since 6a,, 0a, and T —! are continuous homomorphisms, 4, is also a 75-
continuous homomorphism.

Since {H (U;) ®WP("X2)}Z°=0 is an S-absolute decomposition for
H(U;) @rHp (Us) [5, 8] and H (Uy) ®P ("Xg) = P ("X2; H (U1)) the
problem of showing that 6, satisfies condition (2) reduces to proving
the following: if (P,), is a bounded null net in H(U;) &P ("X2) then
02 (Py) — 0.

Let € > 0 be arbitrary. Since f,, and fa, are continuous there exist
K, compact in Uy, a positive number p,0 < p < r and C > 0 such that

[162; (N S Cfll g, for all feH(Uh)

and
|6a, (P)|| < C ||P[|p forall Pe P ("Xs).

Since (Pu), is bounded the (BB)-property for the projective tensor
product of a Fréchet nuclear space and a Banach space implies there
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exist bounded sets By in H (U1) and By in P ("X3) such that for all «
we have representations

[e e]
Po = Z)‘?fia@Pia
i=1
where > 2, M| < 1, f* € By and P{* € By. Let M = sup;, || f{llg, -
We can find b € A® X5 such that

162, (P2) — 0 (P)]], < =

< —
FP—CM
for all 7 and . Let b = 2521 b; ® w; where b; € A and w; € X5. Hence
62 (Pa) — [fa; ® Ob] (Pa)ll = [0, @ Baz—b] (Pa)ll

00
Z Ai0ay (fi*) Bay—b (F)
i=1

IA

- (a3 (o7 8
SZP\H'CHfi ||K1'C_M

=1

<e

for all o.. Let Ko denote the closed convex hull of the set A := {wjy,...,
we}. Since A is finite K3 is a compact subset of X,. By the Polarization
Formula we can find C’ > 0 such that

106(P)II < C"[I Pk,
for all P € P ("X5). This implies

1[6a; @ O] (Pa)ll < D 1A8]- 162y (S - 1166 (P
i=1

SOOI, NP e, -
i=1

Since this holds for any representation nuclearity implies that both
I1[0a, @ 6p) (Ps)|| and ||0, (Pa)|| tend to 0 as @ — oo. Hence 6, sat-
isfies condition (2). Uniqueness follows from the finite dimensional
uniqueness result of Zame [19] and the uniqueness already established
for H (Us) . O

The final step, when X has the bounded projection property, depends
on the following lemma.
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LEMMA 5. Let X denote a Banach space with open unit ball B. If X
has the bounded projection property and the (A,~y) extension property
with (A,v) and a € A ®,X then there exists, for every ¢ > 1,6 > 0
such that, for every ¢ > 0, we have the following decompositions:

1. X = X1(e) ® Xz(e), X1(¢e) finite dimensional,

2. U(e) :=Ui(e) ® Ua(e), Ui(e) C X1(g), Ua(e) = r(B N Xa(e)),

3. a=a; Paz,o(a1) CUi(e),claz] <,

4. o (a)+eB C Ui(e) ®Us(e) Co(a) +dB.

By Lemma 5 we can choose a strictly decreasing null sequence of
positive numbers (e,,),, such that U(e,) @ Ua(e,) C Ui(en) ® Ua(em)
for n > m. This implies

(H (o (a)),m) = limHp (V1(en) © Uz(en)) -
n
The uniqueness in Lemma 4 shows that we can combine the 6,’s defined
on lim Hy, (U1 (en) ® Uz(en)) to define a 7p-continuous homomorphism 6,

n
from (H (o (a))) into A which is 7y continuous on the bounded subsets
of Hy (Ui(en) @ Ua(ey)) for all n. The following deep result of Mujica
implies that 8, is 79 continuous.

PROPOSITION 6 (J. Mujica, {12]). If K is a compact subset of a
Banach space X then

(a) the sets {fE’H(K—I—BT) Nl gsm, Sj}, r>0,7>0forma
fundamental system of bounded and compact subsets of (H (K),
7‘0).

(b) (H(K),7o) is a k-space, that is, mappings from H(K) into a topo-
logical space are continuous if and only if their restrictions to com-
pact sets are continuous.

Moreover a further application of Proposition 6 and the uniqueness
established in Lemma 4 proves the uniqueness in part (a) of Theorem 2.
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