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BOUNDARIES FOR AN ALGEBRA OF
BOUNDED HOLOMORPHIC FUNCTIONS

L. A. MoraES! AND L. ROMERO GRADOS?

Dedicated to the memory of Klaus Floret (1941-2002)

ABSTRACT. Let Ay(Bg) be the Banach algebra of all complex val-
ned bounded continuous functions on the closed unit ball Bg of a
complex Banach space E, and holomorphic in the interior of Bg,
endowed with the sup norm. We present some sufficient conditions
for a set to be a boundary for A,(Bg) in case E belongs to a class
of Banach spaces that includes the pre-dual of a Lorentz sequence
space studied by Gowers in [6]. We also prove the non-existence of
the Shilov boundary for Ay(Bg) and give some examples of bound-
aries.

Introduction

Let Ay(Bg) be the Banach space of all complex valued functions de-
fined on the closed unit ball Bg of a Banach space E which are bounded
on Bg and holomorphic in the interior of Bg. It is clear that A(Bg) is
a Banach algebra when given the norm || f| = sup,ep, [f(z)| . I E is
finite dimensional, A,(Bg) coincides with its closed subalgebra A, (Bg)
of those functions of Ay(Bg) which are uniformly continuous on Bg.

Following Globevnik [5], a subset F of Bg is a boundary for A =
Ap(BEg) (or A= A,(Bg)) if ||f|| = sup,ep |f(z)] forall fe A If E is
a finite dimensional space, A is a uniform algebra and it is well known
that the intersection of all closed boundaries for A is again a closed
boundary for A, called the Shilov boundary for A (see [12], p.38). If E
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is an infinite dimensional space, the existence of the Shilov boundary for
A is not guaranteed.

If E =™ with the sup norm, A = Ay(Bg) = A,(Bg) is the polydisc
algebra and the boundaries for A have been studied extensively (see [9]
or [7]). The cases E = ¢y and E =, (1 < p < 00) have been studied in
[4] and [1] respectively. Globevnik showed that the Shilov boundary for
Ayu(Be,) doesn’t exist. Latter Aron, Choi, Lourengo and Paques showed
that in case E' =, (1 < p < 0o) the Shilov boundary for A,(By,) exists
and coincides with the unit sphere S5;,. In the same paper they show
that the Shilov boundary for A, (B;_) doesn’t exist.

In this paper we will be interested in the algebra A4,(Bg) where G
is the pre-dual of the Lorentz sequence space d({ %}, 1) considered by
Gowers in [6]. Gowers was the first one to observe that this space is
useful when we are interested in studying problems related with norm
attaining functions. Afterwards this space has received attention in some
recent papers (see [2], [3] and [11]). In [8] we studied the boundaries
for A,(Bg). Since Ay(Bg) C Ap(Bg), every boundary for A;(Bg) is a
boundary for A,(Bg). But it is not true that every boundary for A,(Bg)
is a boundary for A,(Bg) (see Example 2.7). In cases E = cgand E = G
it was possible to give a complete description of the boundaries for the
algebra A,(Bg) (see [5] for E = ¢y and [8] for E = G), but the study
of the boundaries for Ay(Bg) seems to be harder. In [5] Globevnik
got sufficient conditions for a set to be a boundary for Ap(B,). In
this work we establish sufficient conditions for a set to be a boundary
for Ay(Bg). We also investigate existence of the Shilov boundary for
Ap(Bg)(ie. the smallest closed boundary for Ay(Bg)). It was known
that the intersection of all closed boundaries for A,(Bpg) is empty when
E = cg or l (see [5] and [1])and coincides with the unit sphere S;, when
E =1, (1 <p< o) (see[1]). We are going to show that the intersection
of all closed boundaries for A,(Bg) is empty.

First of all we recall some definitions and results established in (8]. If
we fix p € IN={1,2,3,...}, for each complex sequence z = (2;)32; we
define

> 12l
bpn(2) = sUp =
[7l=n ﬂ%

Jj=1

where J C IN and |J| denotes the cardinal of the set J. We denote by
Gp the complex Banach space of the complex sequences z = (2;)32 such
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that limy,_,eo¢pn(2) = 0, endowed with the norm given by

Hsz SUP ¢pn( z)

for all 2 € Gp,. The space considered by Gowers in [6] corresponds to
the case p = 1. For this reason G, will be called the Gowers space
with characteristic p. All the spaces G, are clearly isomorphic but our
sufficient conditions for a set to be a boundary for A,(Bg) depend on
the introduction of these spaces.

It is clear that we can identify the set €™ with the set of the sequences
z = (2;)2, € Gp such that z; = 0 for all i > n. We will denote (C", || ||)
by Gp.n and we will say that G}, is the Gowers space with characteristic
p and finite dimension n. We remark that

Z |1
(F1)  Jell= sup sup
1<k<n |Ji=k E 1
p+j—
]_
For each J C IN, let @ denote the set of all z = (2;)$2, such that z; = 0
for all i ¢ J. If |J| = k we have that €7 is isomorphic to a subset of
C™ for all n >k (we will write €7 C €™). Given z = ()2, € Gp,
let J C IN such that z; = 0 foralli & J. If zy = Y zje; it is clear
jed
that ||z, = ||2s]lp- In this sense, if 2 € G}, has at most k coordinates
different from zero we will say that z € Gp . If z = ()2, € Gp, the set
of all j € IN such that z; # 0 is called the support of z and is denoted
by supp(z). An element z € G, is a finite vector if supp(z) is a finite
set.

Let S, and B, denote, respectively, the unit sphere {z€ G, : ||z]l, = 1}
and the closed unit ball {z € G, : ||z||, < 1}. By Proposition 3.2 of [§]
the set of the finite vectors of the unit sphere Sy, is dense in B,. For each
n € IN, let Sp, and By, denote S, N Gprn and B, N Gy, respectively.

for all z € Gpp.

DEFINITION. Let J be a finite subset of IN. The torus in G, associ-
ated to J is the set T of all z = (2;)72; € Gy such that

(t1)z; #0 if and only if j¢€J
(t2) Z 2] = Z P

(t3) Z 251 <

t
JeL j=1
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In case J = {1,...,n}, we will denote Ti)] by T;*. We call any vector
belonging to a torus a toroidal vector.

1. Boundaries for Ay(B,)

PROPOSITION 1.1. Let (J,)52, be a sequence of finite subsets of IN
such that any finite subset of IN is contained in J, for some n € IN.

Then S = U, T;" is a boundary for Ay(Bp).

Proof. Take f € Ap(Bp) with || f|| = 1 arbitrary. Since the set of the
finite vectors of .Sy, is dense in S, we can find a sequence of finite vectors
(yk)32; C Sp such that

- <Ifl <1

By hypothesis, for each k& we have supp(yx) C J, for some n and con-
sequently yx € By, where k, = |J,|. By Theorem 2.4 of [8], T, is a
boundary for A.(Bp,) = Ap(Bpi, ) and so there exists 2 € TPJ” such
that
1
1- 2 <)l < f@n)l =1

So there exists a sequence (x)52, € S = n; T;~ such that

hmk:—»oo'f(xkﬂ =1.
O

DEFINITION 1.1. Let S C B, such that SN By # 0 for all k£ € IN.
For each k € IN and 0 < € < 1 we define

Ck(S,€) = sup{|f(0)] :f € Ap(Bpsr)s IfI <1, |f(2)] <1-¢
for all z € SN Bpyi}.

We say that S is a 0-boundary for Ay(B,) if suppew Ck (S, €) < 1 for all
€ > 0. A family {S, }+er of subsets of By, such that S, N By # 0 for all
v € I' and for all k € IN is said to be a uniform family of O-boundaries
for Ay(B,) if

sup sup Ci(Sy,€) <1 for all € > 0.
~vel keN

DEFINITION 1.2. Let M = {mq,ma,...,m} C IN with m; < ma <
- < my and let ¢ : IN — IN\M be the canonical bijection that
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preserves the order. We define a mapping Iy from H = {z € G, :
supp(z) N M = 0} into G, by

[e 0]
My (z) = wa)ei for all z € H.
i=1

Take S C B,. With each finite vector x € B, we may associate the set
S(JJ) = {Hsupp(z) (y) T+ye S, supp(y) N supp(ar) = w}

THEOREM 1.2. A subset S of By is a boundary for Ay(Bp) whenever
there exists a set V' of finite vectors of B, dense in some boundary for
Ap(Bp) and such that {S(v)}vev is a uniform family of 0-boundaries.

Proof. Suppose that S is not a boundary for A,(Bp). In this case
there exist f € Ay(Bp) and § > 0 such that ||f|| =1 and |f(z)] <1-0
forallz € S.

Let V be as in the hypothesis and let T' be a boundary for Ay(Bp) such
that V is dense in T'. It is clear that there exists a sequence (v,)22, C V
such that lim,_,e0|f(vn)| = 1.

For each n € N, let m, be the cardinal of supp(v,) and define a
mapping ¢, from Bpim, into € by

Pn(z) = flon + W;li)p(vn)(x))
for all z € Bpim, . It is routine to verify that
U + ﬂ;l}pp(vn)(x) € Bpim,

for all € Bpym,. We affirm that the sequence (¢,)32, satisfies the
following conditions:

(¢)  &n € Ap(Bptm,) and [|¢n]] <1 for all n € IN,

(i1)  |pn(z)] <1 =94, for all z € S(vy) N Bpsm,,

(i) lim |¢n(0)| = 1.

n—o0

Indeed: (i) follows from ||f|| = 1 and from the linearity and continuity

of the mapping
-1

Mupp(y) - Cptmn — Gptmn:

Given any = € S(vn), by definition 1.2 we have = = Typp(w,)(2) Where
vn+2z € S and supp(v,) Nsupp(z) = B and (ii) is true as z = W;li)p(v )(:c)

and |¢,(z)| = | f(vn + 2)| < 1 — 4. Finally,
Jim [6(0)] = lim [F(w,)] = 1
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gives (iii). Now (i) and (ii) imply
Cma(S(vn),6) = sup{lg(0)| : g € Ap(Bpsm, ) llgll <1,|g()] <1 -4,
Vz € S(vn) N Bpim., }
> [4n(0)].
Consequently supgcpy Ci(S(vn), ) > |¢,(0)], and by (iii)
sup sup Cr(S(v),08) > sup{|¢n(0)|: n e N} = 1.

veV keN
This contradicts the fact that {S(v) }yev is a uniform family of 0-bounda-
ries for Ay(Byp). O

LeEMMA 1.3. Let {Sy}yer be a family of subsets of By. If there exists
r € IR satisfying 0 < r < 1 and S, NrBpyy # 0 for all v € T for all
k € IN, then {Sy}yer is a uniform family of 0-boundaries for Ay(Bp).

Proof. In case 7 = 0 is clear as in this case 0 € 9, for all v €
I'. Suppose 0 < r < 1 and take § = % — 1. Fix k£ € IN arbitrary.
Given y € S,(\rBptk, let v € Bpyi such that y = rv. By lemma
1.4 of [5] there exists C(d) < oo (independent of k) such that every
9 € Av(Bpir), llgll £ 1, satisfies

9(0) = g(y)] < C(B)[ 1 - |g(0)] ]

c) l9(y)
0) < .
9O= 776G T 1+ 0@
If |g(z)] < 1 —€ for all z € SyN Bpyk, we have
€

lg(0)] =1— 1500

and so

and this implies
€
<l— —0u-— Il ke IN, for all T
Cr(Sy,¢) <1 1700 for a €N, forall v&
where C(4) is independent of k£ € IN and v € I". So,
sup sup Ci(Sy,€) <1
ver keN

for all € > 0. |

LEMMA 1.4. Let 6y > 0 and let {Sv} er be a family of subsets of B,
such that for each v € I" and each k € IN there exists x., € S, satisfying
€z, € Sy N Bpyy, for all @ € R, |9] < 6y. Then {Sy}er is a uniform
family of 0-boundaries for Ay(Bp).
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Proof. Take k € IN, 0 < § < 1 and «y € I arbitrarily. If ¢ € As(Bptr)
is such that ||¢|| < 1 and |¢p(z)] < 1 — 4 for all z € S, N Bpyp by
hypothesis there exists x, € Sy satisfying

|p(e®z,)] <14 for all |6] < 6.

Now, if we define f : A — € by f(z) = ¢(z.2y), the mean value property
for analytic functions gives

Y
6(0)] = [f@)] <1- =2
since ‘ ‘
1F(e?)] = |p(e?z,)| <1 -6 for all |8] < 6.
Therefore

66,
sup sup Cg(Sy,6) <1— T
~v€I keIN T

O

COROLLARY 1.5. Let V be a set of finite vectors of B, which is dense
in some boundary of Ay(B,). Assume that S C B, and assume that
there is some 0 < r < 1 such that given any v € V and k € IN there
exists some y € G, satisfying ||y|lp+x < 7, supp(v) Nsupp(y) = @ and
v+y €S. Then S is a boundary for Ay(Byp).

Proof. Use Theorem 1.2 and Lemma 1.3. O

COROLLARY 1.6. Let V' be a set of finite vectors of B, which is dense
in some boundary of Ay(Bp). Assume that S C B, and assume that
there is some 0y > 0 such that given any v € V and k € IN there exists
some y € By, satisfying supp (v)Nsupp(y) = 0 and v+ ey € S for all
|6| < 6g. Then S is a boundary for Ay(Bp).

Proof. Use Theorem 1.2 and Lemma 1.4. O

2. Examples

The results proved in Section 1 allow us to give examples of bound-
aries for Ay(B)) different of that given by Proposition 1.1.

ExAMPLE 2.1. Let 85 > 0. The set

H:UU{&:-*—(xt)?ileBp::cn:

n=1j=1

is a boundary for Ay(By).

etf

m’ 6] < 6o}
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Proof. We are going to use corollary 1.6. For each j € IN and
1<n<jlet

Jnj={k€N:k#n and 1<k <j}

and let Ty 7 denote the torus in G, associated to a J, j. By theorem
1.1 we get that V = U2, U], T is a boundary for Ay(B,) and it is
clear that V' is a set of finite vectors. For each v € V we have v € T,

for some j € IN and n € IN satisfying 1 < n < j. For each k € IN, let

Yr = (y¥)2, where y* = 0 for all s # n and 3 = Iﬁ. It is clear that
yr € Bpyk, supp(v) Nsupp(yk) = @ and v + ¥y, € H for all |0 < 6.

Therefore by Corollary 1.6 we have that H is a boundary for A,(Bp). O

EXAMPLE 2.2. Let 0 < r < 1. The set

H=JJlzeB, 2= —}

n=1k=1 ptk—1
is a boundary for A,(B)).

Proof. Let V and T, 7 as in the proof of the Example 2.1. For each
Jj € IN and n € IN satisfying 1 < n < j, let v € Tp"). Given k € N, let
y = (ys)32; where ys = 0 for all s # n and y, = >+ 1t is clear that

lyllp+x < 7, supp(v) Nsupp(y) = 0 and v+ y € H. By Corollary 1.5 we
have that H is a boundary for Ay(B,). O

ExXAMPLE 2.3. For each g > 0, and m € INU {0} fixed, the set

[o ¢l o]

Hy= || J{z =), €B,: (z;)52) € T,
n=2k=1

B ez’&

T p+m+k—1

where Tg—l = T;l’“”"‘l}

Tn ., 18] < 8p,2; =0 for all j > n},

is a boundary for Ay(Bp).

Proof. Let V. = U2, T7'. By Proposition 1.1, V is a boundary for
Ap(Bp) and it is clear that V is a set of finite vectors. If v € V, then
v € T3 for some n € IN. For each k € IN, we take y = (y;)32; where

ys=0forall s#n+1and y,11 = m It is clear that

lyllp+i < 1, supp(v) Nsupp(y) = 0 and v+ ey € H,,
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for all |8| < 6y. By corollary 1.6 we have that H,, is a boundary for
Ay(Bp). O

EXAMPLE 2.4. For each 0 <r <1 and m € IN fixed, the set

[o 0] oC
Ho= |J Ulo= @) €8+ @)jo € T3
n=2 k=1
]

T ptmtk—1
is a boundary for Ay(Bp).

Proof. Let y = (y5)%2, be defined by y, = 0 for all s # n 4+ 1 and
. Apply Corollary 1.5 as in Example 2.3. |

Tn z; =0 for all j >n}

Yntl = pmikn
ExAMPLE 2.5. For each 6y > 0 and m € INU {0} fixed, the set

o0 o0
Hy= ] J{z=@)R1€By: ()] € Tp7Y,
n=2 k=1
¢t
p+m+k-—1
forall j >n, j #n+m}
is a boundary for Ay(Bp).

Proof. Let V as in the proof of Example 2.3. If v € T and k € IN,
take y = (y5)32; where ys = 0 for all s #n+ m and ypym =
It is clear that

lyllpsx < 1,supp(v) Nsupp(y) =0 and v+ ey € H,, for all |g] < bo.
Therefore by Corollary 1.6 H,, is a boundary for Ay(B,). O

Tp4m = |9| < 90,%' =0

1
pt+m—+k+n’

EXAMPLE 2.6. For each 0 <7 < 1 and m € IN fixed, the set

o0 o0
Hp= |J {z=(@)521 € By (2)j=f € 7Y
n=2k=1
,

p+m+k—1
is a boundary for Ay(B,).
Proof. Let V as in the proof of Example 2.3. If v € T and k € IN,

take y = (ys)2,, where ys = 0 for all s # n +m and yn4m =
It is clear that

Tntm = zj =0 forall j>n, j#n+m}

r
p+mtk+n’

lyllp+x <7, supp(v) Nsupp(y) =0 and z+y € Hp,.
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By corollary 1.5 H,, is a boundary for A(Bp). O

REMARK 2.1. For each m € IN, let U, be a countable dense subset
of T;". We can replace T, ;_1 by Up-1 for each n € IN in Examples 2.3
to 2.6 and get examples of countable boundaries for Ay(B,).

REMARK 2.2. In Example 2.3 (equivalently Example 2.4, 2.5 and
2.6), {Hpn}mew gives a disjoint family of closed boundaries for A;(Bp)
and therefore the Shilov boundary for this algebra doesn’t exist.

Next, we give an example of a set that is a null set for some f €
Ap(Bp) and is a boundary for A,(By).

ExAMPLE 2.7. The set

S: U{xz(xn)gbo’:le-Bp:xn_’_lz

n=1

1
p+n

}

is a boundary for A, (Bp) and is a null set for some non-zero f € Ay(Bp).

Proof. By Proposition 3.5 of [8] S is a boundary for A,(Bjp). Choose
an increasing sequence (k,)52; so that

™) L= (=2 (| <5 neN)
and
log 2 1
< —.
(2) k, —on
Define, for each z = (z,)22; € By,
x 1
— II® T Vs,
3 fla) =Tt - 2

It is easy to check that the factors in the above product belong to
Ay(Byp). Let x € B, and consider U(z) = {y € By : |z — yll, < 3}
There exists some ng € IN such that |z,| < % for all n > ng. So, given
any y = (yn)ox, € U(x), we have

— 1 1 1
ijlg{:l_lgly" ﬂU"'—}—\ar:n|<z+—=— for all n > ng.

4 2

So, by Theorem 15.4 of [10] it follows that the product (3) converges
uniformly on U(z) and f # 0. Since z is arbitrary it follows that f
is continuous on B, and analytic in the interior of B,. Further, given
z = (zn)o2, € By we have

|| 1

S bk
p+n—17"2
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for all n > 2. This follows from |z,/n| < 1/n in case where p = 1 and
from

lzn/(p+n— 1) < |za| < 1/p
in case where p > 2. Consequently,

1 | Ty

1
—<1- <|1l-—<14+=-<L2
2~ p-l—n—l"| p+n—1|_ +2_ ’
and this implies log |1 — —%2—| <log2 for all n > 2 (where log denotes

the principal branch of logarithm). Now, by (2) we get

m g Tn el N B
=2 (1 p—i—n——l) 1 exp{log(l p+n—1) ]
1 T
= JIm Re | —1 _

1 T
= e (4 loglt - —2))
pexp (- loglt - o
m 1 . 1 1
< Hn:Qexp(k—log2)_<_Hn:2expﬁgexpziﬁ
n
n=2

for all m > 2 and for all x € B,,. So, f € Ay(Bp). O
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