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HOPF FIBRATIONS ON LENS SPACES

SUNGBOK HoNG

ABSTRACT. We give a certain uniqueness properties for the fiber of
the Hopf fibration on lens spaces.

1. Introduction

Let S3 be the unit sphere in C x C endowed with the geometry associ-
ated with the natural action of O(4). Let p, g be relatively prime positive
integers. The map p: S® — S defined by p(u,v) = (€274/Py, e=27/Py)
is an isometry which generates a free Z, action on S3. The quotient
space S3/ < p > is the lens space L(p,q). We let u : S3 — L(p,q)
denote the quotient map. The 3 sphere S2 is the union of two solid tori
Vi = {(u,v) € 83 :|ul®>1/2} and V5 = {(u,v) € $3 : |u|? < 1/2}
whose intersection is the torus T = {(u,v) € S*: |u |* = 1/2}. This
decomposition of S is invariant under p and descends to give a decom-
position of L(p,q) into solid tori u(V1), u(V2) whose intersection is the
torus p(T"). Choose integers r and s so that r¢ — ps = —1, and f be the
affine diffeomorphism on S x S given by f(u,v) = (u"vP,u*v?). Then
L(p, q) can also be described as the 3-manifold V' Us V' obtained by iden-
tifying the boundaries of a solid torus V = S x D? using f : 8V — 9V
as attaching map. For more details on these definitions see [2], [3] and
[5].

An embedded torus which separates L(p, q) into two solid tori V; and
V3 is called a Heegaard torus, and the associated decomposition of the
lens space into two solid tori is a Heegaard decomposition. Bonahon [1]
has shown that any two Heegaard tori of a lens space are isotopic. Hence
every diffeomorphism of L(p, ¢) is isotopic to a diffeomorphism which
preserves the Heegaard torus and Bonahon used this idea to calculate
the mapping class group of L(p, ¢), namely mo Diff(L(p, ¢)).
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A sweepout of L(p, q) is a smooth map o : T x [0,1] — L(p, q), where
T is a torus such that

1. g = o(T x {0}) and £, = o(T x {1}) are imbedded circles in
L(p,q),

2. 0 |rx,1): T x (0,1) — L(p, q) is a diffeomorphism onto L(p,q) —
(Eo U 21),

3. Near T' x 01, o gives a mapping cylinder neighborhood of £yU3%;.

Associated to any ¢ with 0 < ¢ < 1, we denote (T x t) by P, and call
it a level surface of o.

The standard elliptic geometry on the 3-sphere is the geometry as-
sociated with the orthogonal group under its natural action on the unit
sphere in R%. A 3-manifold M is elliptic if it admits a covering map
5% — M whose covering transformations act freely on S° as a sub-
group of Isom(S3%) = O(4). The Hopf fibering on S2 is an S'-bundle
structure with projection map H : §2 — §2 = C U {oo} defined by
H(zp,21) = 20/z1. The left action of S! on S3 takes each Hopf fiber to
itself, so preserves Hopf fibering, namely the fibers are the orbits of the
left action of S* on S3. If G is a subgroup of Isom(S3) which preserves
the Hopf fibering then $3/G has an induced fibration from S3. We call
it the Hopf fibering of S3/G. In this way, we may obtain Hopf fibrations
on lens spaces. Basic details and background concerning elliptic struc-
tures and Hopf fibrations on elliptic manifolds may be found in [6] and
[4) (section 3).

For (z,w) € S! x S, we define (z,w)- (u,v) = (2u, wv) when (u,v) €
Vi, and (z,w) - (u,v) = (2"wPu, z°w%) when (u,v) € V,. This defines
a torus action on L. Suppose a and b are relatively prime integers then
z + (2%, 2%) is an embedding of S* into S x S, and composing with the
torus action defines an S'-action on L. This action determines a Seifert
fibering on L in which V; and V5 are union of fibers. On the solid torus
V1 the fibering has type (a,b), and it has type (ra + pb, sa + gb) on V5.
The associated Seifert fibration ¢ : L — B = L/S* has orbit space B
which is a 2-sphere with cone points of order | a | and | ra + pb |. By
making different choices of the type (a,b) of the fibering on Vi, we may
obtain infinitely many distinct Heegard fibering on L. Analyzing the
orders | a | and | ra + pb | of the cone points on B with the condition
rq—ps = —1, one can easily deduce that L(p, g) has a Heegaard fibering
with no exceptional fibers if and only if ¢ = +1 (mod p).

In this paper, we give a certain uniqueness properties for the fiber of
the Hopf fibration on lens spaces.
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2. Hopf fibration

From now on, we endow L(p, q) with the Hopf fibering and assume
that our sweepout of L is selected so that each P, is a union of fibers.

LEMMA 1. Let L(p,q) be a lens space with 1 < q < p/2, which is
Seifert-fibered with Hopf fibering. Let P be a Heegaard torus which is
a union of fibers, bounding solid tori V and W. Suppose that a loop in
P is a longitude for V and W. Then q = 1. If p > 2, then the loop is
isotopic in P to a fiber.

PRrROOF. Let £ and m be loops in P which are respectively a longitude
and a meridian of V, and so that pf + ¢m is a meridian of W. If ¢
is any loop in P which is a longitude for V, then (with one of its two
orientations) ¢ has the form ¢+km in H1(P) for some k. The intersection
number of ¢ with pf + gm is ¢ — kp. Since 1 < g < p/2, this can equal
+1 only if (p,q,k) = (2,1,1) or (p,1,0),s0 g =1. Whenp > 2, k=0
and so ¢ = £. Since ¢ = 1, the Hopf fibering is nonsingular, so the fiber
is a longitude for both V and W. Since p > 2, c¢ is the only longitude of
V that has intersection number +1 with the meridian of W, so it must
be isotopic in P to a fiber. O

THEOREM 2. Let h : L(p,q) — L(p, q) be a diffeomorphism isotopic
to the identity with h(Ps) = P; where 0 < s,t < 1. If p > 2, then the
image of a fiber of P; is isotopic in P; to a fiber.

Proor. Conjugating by a fiber-preserving diffeomorphism of L{p, q)
that moves Ps to P;, we may assume that s = ¢t. Writing P for P, let V'
and W be the solid tori that P bounds. Let ¢ and m be loops in P as
in the proof of lemma 1, and write hy : Hy(P) — H;(P) for the induced
isomorphism.

Suppose first that h(V) = V. Since the meridian disk of V' is unique
up to isotopy, we have h.(m) = £m. Since h is isotopic to the identity
on L(p,q) and p > 2, h is orientation preserving and induces the identity
on m1(V). This implies that h.(m) = m. Similar consideration for W
show that h.(pf + gm) = pl + gm, so h.(€) = £. Thus h, is the identity
on Hi(P) and the theorem follows for this case.

Suppose now that h(V) = W. Since h is isotopic to the identity and
reverses the sides of P, h is orientation-reversing on P. Since h must
take a meridian of V' to one of W, h.(m) = €1(pf + gm) where ¢ = £1.
Writing h.(£) = 7€ + sm, we find that 1 = £-m = —h.(f) - h.(m) =
—e1(gr—mps). The facts that h is isotopic to the identity on L, £ generates
m1(L), and m is 0 in 71(V) imply that » = 1 (mod p), so modulo p we
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have 1 = —¢;gq, forcing ¢ = 1, ¢; = —1, and h.(m) = —pf — m. Since
h carries a meridian of W to one of V, we also have h.(pf + m) = eam
where €3 = +1. Subtracting, we find h.(pf) = pf + (1 + e2)m. Since
p>2and e = +1, we have 1 + €3 = 0, so hy(£) = £. Since ¢ = 1, £ has
intersection number 1 with the meridian pf 4 gm of W. Lemma 1 shows
that £ is homotopic in P to the fiber of the Hopf fibering. This proves
the theorem. O
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