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MULTIOBJECTIVE VARIATIONAL
PROGRAMMING UNDER GENERALIZED
VECTOR VARIATIONAL TYPE I INVEXITY

MoonN Hee Kim

ABSTRACT. Mond-Weir type duals for multiobjective variational
problems are formulated. Under generalized vector variational type
I invexity assumptions on the functions involved, sufficient optimal-
ity conditions, weak and strong duality theorems are proved efficient
and properly efficient solutions of the primal and dual problems.

1. Introduction and preliminaries

Multiobjective variational programming problem arises when more
than one objective functional is to be optimized over a feasible region.
There are three kinds of solutions for such problem, that is, properly
efficient solutions, efficient solutions and weakly efficient solutions. An
important factor in the development of variational problems was the
investigation of a number of mechanical and physical problems.

In 1992, Bector and Husain (1] first applied duality method of ordi-
nary multiobjective optimization problem to multiobjective variational
problem, and obtained duality results for properly eflicient solution un-
der convexity assumptions on involved functions. Since then, many au-
thors ([2], [7] - [12]) have studied optimality conditions and duality theo-
rems for multiobjective variational problems under generalized convexity
assumptions on involved functions.

Very recently, Hanson et al. [4] defined vector type I invexity, along
the lines of Hanson [3], and Jeyakumar and Mond [5] extending the
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pseudo, quasi, quasi-pseudo, pseudo-quasi vector type I invexity of Kaul
et al. [6], and obtained several sufficient optimality conditions and du-
ality results for ordinary multiobjective optimization problem under the
just mentioned vector type invexity assumptions.

The purpose of this paper is to extend the optimality and duality
results Hanson et al. [4] to multiobjective variational problems. We
introduce variational versions of several concepts of vector type I in-
vexity considered by Kaul et al. [6], and establish sufficient optimality
conditions and duality results for efficient or properly efficient solutions
of a multiobjective variational problem under the just mentioned vector
variational type I invexity assumptions.

Throughout this paper, we will use the following notations.

Let I = [a,b] be a real interval: let f := (f1,--, fP): IXR"xR" —
RP, g:=(g',---,g™) : I xR® x R® — R™ be continuously differentiable
functions. In order to consider f(t,z(t),%(t)), where z : I — R" is
differentiable with derivative &, denote the partial derivatives of f by

1 ? K3 (2

f;:l:gf,aaf]’ f;_[af7,af]7 Z=1a7p
1 Ozn, 01Ty Oy,

Let C(I,R™) denotes the space of continuous functions ¢ : I — R™,
with the uniform norm; C (I, R™) is the cone of nonnegative functions
in C(I,R™). Denote by X the space of piecewise smooth functions z :
I — R", with the norm ||z|| = ||z]|c + || D%|/oc, Where the differentiation
operator D is given by

¢
u=Dr < z(t) =« —i—/ u(s)ds,

where « is a given boundary value: thus D = d/dt except at disconti-
nuities.
Our problem is the multiobjective variational problem (VP) defined

as follows;
(VP)

b b b
Minimize / £t 3, 3)dt = ( / FAt 2, 8)dt, - / fp(t,x,:i:)dt>
subject to z(a) = a, z(b) = 3,
gj(t,{l,',.’l?) § 0,tel,Vj=1,---,m.
Let Xy be the set of feasible solutions for (VP), that is,
Xo:={zeX|gltzz)Z0, Vtel}.

The following definitions will be needed in the sequel.
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DEFINITION 1.1. (1) A point z* € X is said to be an efficient solution
of (VP) if there is no other feasible point € Xy such that

b b
/ fl(t,:v,j:)dt§/ fit,z*,&%)dt for all ie{l,---,p}
a a
and
b b
/ fj(t,:c,ﬁc)dt</ fI(t,z",2%)dt for some je{1,---,p}.
a a

(2) A point z* € Xj is said to be a properly efficient solution of (VP)
if it is an efficient for (VP) and if there exists a scalar M > 0 such that
forallie {1,---,p},

/b fit, z*, &%) dt — /b fit,, &)dt

b
sM </bfj(t,93,¢)dt—/ fj(t,:c*,:'c*)dt>,

for some j such that

b b
/fj(t,:c,d:)dt>/ fI(t, z*, &%) dt
a a

whenever x € Xy and

b b
/f’(t,x,:'c)dt</ fi(t,z*, &*)dt.

Now we give variational versions of vector type I problems of several
concepts of generalized vector type I invexity considered by Kaul et al.

[6].

DEFINITION 1.2. The problem (VP) is vector variational type I invex
at w and @ with respect tonif n: I XxIR*"xR*"xR*"xIR*" - R" is a
continuous function such that Vi € {1,--- ,p}, 7€ {1,---,m}, we have

b b
/ fit,z, &)dt — / Fit,u, w)dt
(1) - @

1\

[t i - 00 0] d
: at
and
b b . d
- / o (&, u, 1) dt > / n(t,z, &, u, )T [g;(t,u,u)—agi(t,u,u)] dt

for all z,u € Xy with (&, %) piecewise smooth on I.
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If strict inequality holds in (1) (whenever z # u) we say that (VP) is
of semi strictly vector variational type I invex at u and 4 with respect
to 7.

DEFINITION 1.3. (1) The problem (VP) is pseudo vector variational
type Iinvex at u and @ with respect tonifn: I xIR* xIR" xIR" xIR" —
IR", then there exists 7 € IRE. and piecewise smooth y : I — R? such
that Vi € {1,--- ,p}, 7 €{1,---,m}, we have

p b . .
S s e ) ~ sl 20

(2)
=>Zn U fi(t, z, :cdt—/ Fi(t,u, udt] >0
and
i /a b n(t, z, & u, )" [yj(t)yi(t, u,u) — -}tyj(t)g;(t, u, u)} dt >0
@3

=——>Z/ y;(t)g’ (¢, u, u)dt < 0.
j=1"°

If the second inequalities in (2) and (3) are both strict we say that
(VP) is strictly pseudo vector variational type I invex at u and u with
respect to 7.

(2) The problem (VP) is quasi pseudo vector variational type I invex
at v and © with respect to 7 if n: I x R® x R™ x R" x R" — R",
then there exists 7 € IRY, and piecewise smooth y : I — IR} such that
Vie{l -+ ,p}, j€{1,---,m}, we have

T[/ f’t:cscdt—/f’tuudt]§0

= Zn/ n(t,z, ,u, u)’ [fz(t,u,u) - Zﬁfd‘(t’u’ u)] dt<0
i=1 e

M

and
m

/bn(t,m,:k,u,ﬁ)T[ ()Gl (t, u, w) — g;tuu]dtZO
— Ja

(4
Z/yj I (¢, u, w)dt < 0.
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If the second inequality holds in (4) is strict, we say that (VP) is quasi
strictly pseudo vector variational type I invex at u and 4 with respect
to n.

(3) The problem (VP) is pseudo quasi vector variational type I invex
at u and u with respect to n if n : I x R" x R™ x R" x R" — R",
then there exists 7 € IRY. and piecewise smooth y : I — IR? such that
Vie {1,---,p}, j€{1,---,m}, we have

Y ' T | ¢4 d .
] Y ' 7 ALY . S
o ;_1 Tz/ n(t, z, T, u, i) [fz(t,u,u) dtf“‘(t’“’“)] dt >0
5 -

:Zrl[/ fzta:mdt—/f’tuu)dt]z

i=1
and

m b
Z / y;(t)g’ (t,u,w)dt = 0

=>Z/ ()" {15000, 00) = G500, 00] e S0

If the second inequality holds in (5) is strict, we say that (VP) is
strictly pseudo quasi vector variational type I invex at u and % with
respect to n.

Now we give an example for Definition 1.2.

EXAMPLE 1.1. Consider the following multiobjective variational pro-
blem:

(VP) Minimize (/b fl(t,m,:t)dt, /b f2(t,:v,:'c)dt>

= ([ @t + i, [ @0+ e

subject to gt z,2):=1—-z,(¢) L0
92(t>x’j:) =1- :L‘z(t) § 0.
Clearly, f: fi(t, z, )dt and f: f2(t,z,2)dt are not convex at u and .
When 9u2u3 — 1 = 0, we let n1(t, z, &, u, i) = min{n} (¢, z, ,u, 0),

—u1}, n2(t, z, ¢, u,w) = min{ni(t,z,%,u,u), —uz} and n(t,z,z,u,u) =
{mt, z, &,u,4),n2(t, x, &, u, )}, where ni(t,z,z,u,u) = #min{mi‘ +
1

T — ud — ug, 3ud(zy + 23 —ug —ud)} and 7% = 0.
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When udu3 — 1 # 0, we let

m(t,z,,u,u)

3z3ud — 71 + 3zoud — 3 — Sudud + vy — 2u3

= min{ T — ul}
2.2 bl 3
Juiu; — 1
n2(t, x, T, u, u)
. 3z3u? + 3z1u? — 3udud — 2ud — 29 — 23 + ug
= min{ , T2 — U},

9uu? -1
and
n(t>m:i:3u:u) = {Ul(t,xaiauaﬂ)»m(t,%ib,%u)}

Then we can easily check the following:

1 1
/ fit,z, g)dt — / Filt, u, a)dt
0 0

1

nv

/0 n(t,z, &, u,w)’ [f;(t,u,u) - %f;(t,u,a)J dt

fori=1,2,
1 ) 1 ) d .
—/ g (t,u,u)dt = / n(t,m,a’:,u,u)T [ggc(t,u,u) — azg;(t,u,u)] dt
0 0

for j = 1,2. Then (VP) is vector variational type I invex at u and %
with respect to 7.

2. Sufficient optimality conditions

In this section, we present sufficient Kuhn-Tucker type optimality
conditions for the problem (VP).

THEOREM 2.1. Suppose that
(i) Z € Xg;
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., (ii) there exist 70 € IRE. and piecewise smooth y° : I — IRT* such
that

p
@ o [fead) - Gria)]
i=1
+y [y?(t)gi(t,i,o‘:) = %y?(t)gi(t,a‘c,a'c)} =0 ae onl,
j=1
(b) y3 (1) (8,2, %) = 0;
j=1

(iii) the problem (VP) is quasi strictly pseudo vector variational type
I invex with respect to 70, y%(-) and 7.
Then T is an efficient solution for (VP).

PROOF. Suppose 7 is not an efficient solution of (VP). Then there ex-
ists # € X, such that ff flt,z,z)dt £ fab f(t,z,z)dt and ff fit,z,2)dt #

[P f(t,z,4)dt.
This implies that

P b b
> U Fit, z, &)dt —/ fi(t,j,:%)dt] <o.
i=1 a a
From the above inequality and the hypothesis (iii), it follows that
SN . d .

6 - t,x,%,%, 2 ‘(t,%,%) — — fi(t,Z,2)| dt £ 0.
© Dot [ e 7 105 - im0 aes
By the inequality (6) and hypothesis (ii)(a) we have

m o b
.~ ] R d 1 R
> /a n(t, , &, %,%)7 [y?(t)gi(t,x,x) - ay?(t)gi(t,z,x)] dt 2 0.
j=1
From the above inequality and hypothesis (iii), it follows that
m b ‘ ‘
") Y [ hesess<o
j=17a
Now by hypothesis (i) and (ii)(b), it follows that

b .
/ y?(t)gj(tvjai‘)dt =0,
a
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for every j, which further implies that

mo b
Z/ ¥I(t)g (¢, 7, z)dt = 0.
j=17a

The last equation contradicts the inequality (7) and hence the conclusion
follows. 0

THEOREM 2.2. Suppose that
(i) € Xo;
(ii) there exist 70 € intIRY and piecewise smooth y* : I — RT
continuous on I, such that
2L o od o .
@ 3ot [f0m8 - e )
+; [y?(t)g;(t,:ﬁ,:%) - ayg(t)ggb(t,az,fz)] =0, ae onl,

®) D w0 (2, 3) =0;
=1

(iil) the problem (VP) is pseudo quasi vector variational type I invex
with respect to 7°, y°(-) and 7.
Then T is a properly efficient solution for (VP).

PROOF. Suppose that Z is not an efficient solution of (VP). Then
there exists x € Xy such that

b b
[ teaaaes [ ez
and
b b
[ st [ sz
This implies that

p b b
(8) r{’[ fit,x, 2)dt — [ fi(t, %, %)dt| <O0.
27 [ s

By the hypotheses (i) and (ii)(b), we have
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From the above equality and the hypothesis (iii), it follows that

Now by (9) and the hypothesis (ii)(a), we have

(10) Z / (t,z, 6,5, ) [fz(m) d;(t,z,i)]dtgo.

Finally, by (10) and the hypothesis (iii), we have for all z € Xj,

(11) [/ f’tzzdt—/f’ mdt]

Since (11) contradict (8), we have the conclusion that Z is an efficient
solution of (VP).
We assume that p = 2. Next let

0
.
M=(p-l)max 5, i#j: 1S0,jSp.

'L

Suppose Z is not a properly efficient for (VP). Then there exists z € X
such that for some i with fab fit,z,z)dt > f‘f fit, z, z)dt,

(12) /bfi(t,a’a,:‘c)dt—/bfi(t,x,o'c)dt
>MUf tmx)dt—/f’ jdt]

V4 such that / it z, &)dt > / (¢, %, z)dt.
a a

From (12) it follows that

/b it z,%)dt — /b fi(t, z, &)dt
[/ £, &)dt — /f’ 53 ]vﬂgz_
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T_’ol [/bfi(t,ir,a?)dt—/b fi(t,:r,j:)dt}
(13) [/fjtxmdt /f] :Ea':dt}

Summing (13) with respect to j( 1), we have that

0 [/b fit, z, %)dt — /b fi(t,:c,:b)dt]

>y 7 Mfﬂtxxdt /f’ idt]

This implies that

J#
Since 3, 7. [f fi(t,z, 2)dt — f i, z, x)dt} < 0, contradicts (11) and
hence % is a properly efficient solution for (VP). O

THEOREM 2.3. Suppose that

(i) z € Xo;

(ii) there exist T € IRE. and piecewise smooth y° : I — IR} such
that

p .
() Zr [fm T, %) tfi(t,:f,a‘:)]
+ [y?(t)g;(t, Z,T) — ( )gfc(t z :c)} =0 a.e onl,

®) D WBgEz,5) =0

(iii) the problem (VP) is semi strictly quasi vector variational type I
invex with respect to 79, 4°(-) and 7.
Then Z is an efficient solution of (VP).

PROOF. Suppose that Z is not an efficient solution of (VP). Then
there exists x € Xy such that

b b
/ f(t, @, &)dt < / £(t,7,2)dt
b
/ (o d)dt 2 / £(t,7,)dt

and
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This implies that

(14) ZT [/ fit:cxdt—/fz I, % ]go.

From inequallty (14) and the hypothesis (iii), it follows that
p b
. , . d ,; .
(15) ZTzO/ n(t,x,i,f@)T |:f;:(t7:f7j)_ _f;:(tajai‘)] dt <0.
i=1 a dt

By the inequality (15) and the hypotheses (ii)(b), (iii) imply that
(16)

Z/a (t,z,%,7,I) [y]( )gl(t, 2, &) — jty?(t)gi( s‘cf)] dt 0.

Adding (15) and (16) we see that the hypothesis (ii)(a) is contradicted.
Hence the conclusion follows. a

THEOREM 2.4. Suppose that

(i) z € Xo;

ii) there exist 79 € intIRY. and piecewise smooth 40 : I — IR™ such
L + Y +
that

) S | e - Ghiad)

i=1
+ Z [y?(t)gi(t,i:,:?) - %yg(t)gi(t,f,i)] =0 ae on I,
j=1
(b) Zyg(t)g] (t’i’>j) =0;
j=1

(iii) the problem (VP) is strictly pseudo vector variational type I
invex with respect to 7%, y%(-) and 7.
Then Z is a properly efficient solution of (VP).

PROOF. By hypothesis (ii)(b) it follows that

> / YO(0)g (¢, 7, 3)dt = 0,
j=1v¢a

which implies by the hypothesis (iii) that

Z/ n(t, z, &, z,z)7 [y?(t)gi(t,:i, z) — %y?(t)gi(t,i,fv) dt <0,
=17a
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which in turn implies by the hypothesis (ii)(a) that

Now from (17) and hypothesis (iii), we have

(18) in@ [/b fi(t,x,;i:)dt—/bf"(t,z,i)dt] > 0.
i=1 e e

Next if Z is not an efficient solution of (VP), then there exists z € X
such that

b b

/ £(t,z,¢)dt < / £(t, 7, 5)dt
and ’ ’
b b

/ £t 7, &)dt # / £(t,3,3)dt

which implies that
P b b
(19) > [ / fit, z, )dt — / f‘(t,ﬁ:,a‘c)dt} <o.
i=1 e a
Since (18) and (19) contradict each other, the conclusion follows.

To establish the proper efficiency of z of (VP), we follow the same
argument as in the proof of Theorem 2.2 except in the end we appeal to
the inequality (18) for a contradiction. O

3. Duality theory

In this section, we prove weak and strong duality theorems for (VP).
We first introduce a necessary optimality condition for (VP), which will
be used for proving strong duality theorems.

THEOREM 3.1. [1] (Necessity) Suppose that

(i) z is a properly efficient for (VP);

(ii) there exists * € Xo with gi(t,z*,2*) < 0 where i € I(Z) :=
{i | ¢%(t,Z,z) = 0} such that

- [ i(t,3,5) — igi(t,a‘c,i")} dt, ¥z € Xo.
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Then there exist 70 ¢ intlRE and 0 € IR with 79,49 not all zero,
satisfying such that

P N i .
ZTi [fx(t’max) - Efi-(t,w,.’li)]

i=1
+Z [y?(t)g;(t,:i,:i) - ?(t)gfb(t,i’,i‘)j' =0 ae on I
j=1
By using a necessary optimality conditions for (VP), we now define

the following multiobjective maximization variational problem as the
Mond-Weir type dual (VD) of (VP):

(VD) Maximize / f(t,u,w)dt

(/fl(tuu /f tuu)dt)

subject to Z'r, {f;(t,u, ) — Ef;i.(t,u,u)]

i=1

5 R 0] o

7=1

Z Yj (t)gj (t7 u, ’d) =0,

j=1

P
1 20, Zn=1, y(t) 20, tel.
Let Y be the set of feasible solutions of problem (VD):

Y0 = {(uvT, y): Z’Ti [f;(tvuaﬂ) - %f;(t,u, u)]

i=1

+ Z [yj(t gm t u u) dtyj(t)gg:(tauau)} =0,

j=1

i=1

Z I(t,u, ) =0, 1 20, Zn—l,y()>0,teI}.
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THEOREM 3.2. (Weak Duality) Suppose that

(i) z € Xop;

(ii) (u,7,y) € Y% and 7 > 0;

(iii) the problem (VP) is pseudo quasi vector variational type I invex
with respect to 7, y(-) and 7.

Then

b b
/ £t 7, 8)dt < / £t u, w)dt
and

b b
/f(t,a:,:‘c)dt;é/ f(t,u,d)dt.

PROOF. By the hypothesis (ii) we have

(20) > [ witg' e u e o
j=1"0

By the hypothesis (iii) and (20) it follows that
(21)

> / n(t, z, &, u, )7 [yj(t)g?;(t,u, ) — %yj(t)gi(t,u,u)J dt < 0.
j=1"2
Using the inequality (21) and the hypothesis (ii) we have
P b . d .
(22) Z Ti / n(ta Z, Zi), u, u)T |:f;(t, u, u) - _f}v(t, U, u):l dt 2 0.
= Ja dt
Hypothesis (iii) and (22), give

z b . b i .
(23) ;n Ua fl(t,x,x)dt—/a f(t,u,u)dt] > 0.

Now suppose to the contrary that

b b
/ F(t,z,d)dt < / F(t,u, @)dt.

Then since 7 > 0, we have

p b b
T fit, x, &)dt — fi(t,u,u)dt} <0,
2| /

which contradicts (23). Hence the conclusion follows. O



Multiobjective variational programming 193

THEOREM 3.3. (Weak Duality) Suppose that

(i) z € Xo;

(i) (u,7,9) € Y% and 7 > 0;

(iii) the problem (VP) is semi strictly vector variational type I invex

with respect to T, y(-) and 7.

Then

b b
/ f(t,z,2)dt < / F(t,u, @)t

and

b b
/ﬂmmW#/ﬂwmﬁ

PROOF. By the hypothesis (ii) we have

(24) Z / y; ()¢ (¢, u, @)dt = 0.

By (24) and the hypothesis (iii) it follows that
(25)

é/ﬂb n(t, z, &, u, )" [yj(t)gi(tyﬂ i) dtyg( Vg (¢, @ a)] ¢ <0.

Using the inequality (25) and the hypothesis (ii) we have

3 ’ . NT b piry = & d i(y = = >
(26) ;Ti/a n(t,z, &, u,u) [fz(t,u,u) - afi(t,u,u)] dt 2 0.

y (26) and the hypothesis (iii) we have

P b oo
(27) ;T [ / Filt z,&)dt / f(t,u,u)dt] >0

Now suppose to the contrary that

b b
[ ttmaars [ rua

Then since 7 > 0, we have

which contradicts (27). Hence the conclusion follows.

gn { /ab it z,z)dt — /ab Filt,u ) dt] <0,
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THEOREM 3.4. (Strong Duality) Suppose that

(i) Z is a properly efficient solution of problem (VP);

(ii) the hypothesis (ii) of Theorem 3.1 is satisfied.

Then there exist 7° € intR%,, and y° € R’} such that (z,7%,3°) €
Y? and the objective of (VP) and (VD) have the same values at T
and (z,7°,9°), respectively. Moreover, if the problem (VP) is pseudo
quasi vector variational type I invex at all feasible solution of (VD) then
(z,7%,94%) € YO is an efficient solution of (VD).

PROOF. Let M = {1,---,m}. By Theorem 3.1, there exist 70 €
intRP and 3° € IRY, 4°(t) > 0 such that

;:”0 [fi(t,ﬂ‘v,f) - ng;;(t,:z,f)]
+Z[ t)gi(t, 7, %) — — v (t)gh(t fz)]zo,wez.

JjerI

Since fab g'(t,%,z)dt =0 for all i € I,
b _ -
/ W (t)g'(t,z,5)dt =0 for all i€l
Taking y? = 0 for all i € M \ I, we have

b .
/ 2 (t)g'(t, Z,%)dt =0 for all i€ M.
a

It also follows that

z_:'r [fz &, E) tf;(t,:%,:%)]

Z [yy gi(t,,2) — y] (H)gl(t, x)] =0.

Therefore (z,7° ,yo) € Y9 Trivially, the objective function values of
(VP) and (VD) are equal.

Next suppose that (Z,7°,1°) is not an efficient solution of (VD).
Then there exists a point (y*,7,7) € Y° such that f: f(t,z,2)dt <
f: f(t, y*,9*)dt, and f: f(t,z,z)dt # f:f(t, y*,9*)dt, which violates the
weak duality. Hence (Z,7°,4°) is indeed an efficient solution of (VP).
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The proof of the following theorem is very similar to the proof of
Theorem 3.4, except that we appeal to the weak duality Theorem 3.3
instead of Theorem 3.2. |

THEOREM 3.5. (Strong Duality) Suppose that

(i) Z is a properly efficient solution of problem (VP);

(ii) the hypothesis (ii) of Theorem 3.1 is satisfied.

Then there exist 0 € intIRY,, and y° € R such that (%,7%,4°) € Y?
and the objective of (VP) and (VD) have the same values at Z and
(z,7°,9°), respectively. Moreover, if the problem (VP) is semi strictly
vector variational type I invex at all feasible solution of (VD) then
(z,7%,4°) € Y? is an efficient solution of (VD).
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