Hazardous Substance Analysis of Disposable Diaper for Infant

Jeoungwha Shin · Hyeon Yoon · Miae Park* · Yungyong Ahn
Korea Basic Science Institute
*Konkuk University
(2003. 8. 12. 접수)

Abstract

The analytical method of toxic heavy metals in disposable diapers was developed. Disposable diapers obtained from Korea, Japan, America and German were determined and quantified. Sample treatment (Total Digestion) was wet chemical acid digestion for extraction of nine hazardous inorganic elements (Sb, As, Pb, Cd, Cr, Co, Cu, Ni, Hg) in disposable diapers. Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) have been used for analyzing nine hazardous inorganic elements. The results were as follows: The concentration of extractable Sb which was treated for 3 hours with artificial urine and disposable diapers was higher than those of 6 hours and 24 hours. The concentration of extractable Cr was same as Sb. On the other hands, the behavior of Cu and Ni were different from Sb and Cr. Concentrations of extractable Cu and Ni increased as increasing the reaction time between artificial urine and disposable diapers.

Key words: Disposable Diaper, Inorganic Compounds, Heavy Metals, ICP-AES, ICP-MS; 종이기저귀, 무기화합물, 중금속, 원자방출분광법, 원자방출광분석기

I. 서 론

현대사회에서 화학공업의 급속한 발달과 그 용용분야의 확대로 다량의 화학물질이 여러 분야에 사용되면서 건강 및 환경오염 문제가 크게 대두되어 왔다. 특히, 성유제품의 사용성 및 물품의 개선, 합성섬유의 고기능성 무여를 위해 각종 가공이 이루어지고 있으며, 이에는 유연제, 반투명가공제, 도전방지제, 실균방충제, 계면활성제, 흡습중력제 등 약 1200여가지가 사용되고 있다.

우리나라 석유제품에 대한 유해물질 함량조사와 유해성에 관한 연구로는 석유제품 가공처리제품의 공해방지에 관한 연구에서 시작되는 원단 및 의류제품에 대해서도 동일한이도 함량조사와 인체제가 실험 결과 조사와 같은 것에 있어서도 유익한 정보가 많은 용역으로 되면 증류율을 정가하여 산출 중지시켜 ICP 분석용 시료로 30ml를 만든다.

2) 용품을 사용한 결과 유해물질 함량방법을 위한 전처리

일회용기저귀의 중금속 함량방법을 위한 전처리 습식분해법을 이용하여 임계 자른 총 중기저귀 시료 1g을 Pyrex beaker에 넣고 질산 8-10ml를 가하고 hot plate 상에서 가열 반응시킨다. 유기물 분해가 어느 정도 진행되어 감색 기체 방출이 적다고면 beaker에 watch glass를 덧고 질산을 다시 가한 후 가열반응시킨다. 질산에 의한 Acid digestion이 끝나 시료가 밀봉 용기에 되면 증류수를 정가하여 산출 중지시켜 ICP 분석용 시료로 30ml를 만든다.

3. 전처리

1) 기저귀제품의 중금속 함량방법

기저귀제품의 중금속 함량방법, 임공 소변을 반복
한 일회용기저귀를 유아의 착용 시와 동일한 온도 조건(40℃)의 온도 하에서 3시간, 6시간, 24시간 용
출한 중금속 함량을 분석하였다.

3. 전처리

1) 기저귀제품의 중금속 함량방법

기저귀제품의 중금속 함량방법, 임공 소변을 반복
한 일회용기저귀를 유아의 착용 시와 동일한 온도 조
건하(40℃)의 온도 하에서 3시간, 6시간, 24시간 용
출한 중금속 함량을 분석하였다.

3. 전처리

1) 기저귀제품의 중금속 함량방법

기저귀제품의 중금속 함량방법, 임공 소변을 반복
한 일회용기저귀를 유아의 착용 시와 동일한 온도 조
건하(40℃)의 온도 하에서 3시간, 6시간, 24시간 용
출한 중금속 함량을 분석하였다.

3. 전처리

1) 기저귀제품의 중금속 함량방법

기저귀제품의 중금속 함량방법, 임공 소변을 반복
한 일회용기저귀를 유아의 착용 시와 동일한 온도 조
건하(40℃)의 온도 하에서 3시간, 6시간, 24시간 용
출한 중금속 함량을 분석하였다.

3. 전처리

1) 기저귀제품의 중금속 함량방법

기저귀제품의 중금속 함량방법, 임공 소변을 반복
한 일회용기저귀를 유아의 착용 시와 동일한 온도 조
건하(40℃)의 온도 하에서 3시간, 6시간, 24시간 용
출한 중금속 함량을 분석하였다.

3. 전처리

1) 기저귀제품의 중금속 함량방법

기저귀제품의 중금속 함량방법, 임공 소변을 반복
한 일회용기저귀를 유아의 착용 시와 동일한 온도 조
건하(40℃)의 온도 하에서 3시간, 6시간, 24시간 용
출한 중금속 함량을 분석하였다.

3. 전처리

1) 기저귀제품의 중금속 함량방법

기저귀제품의 중금속 함량방법, 임공 소변을 반복
한 일회용기저귀를 유아의 착용 시와 동일한 온도 조
건하(40℃)의 온도 하에서 3시간, 6시간, 24시간 용
출한 중금속 함량을 분석하였다.

III. 결과 및 고찰

1. 기저귀제품의 중금속 함량방법

Table 1은 각각의 중기저귀의 중금속 함량을 제시하고 있다. 중기다는 정량정의하고 추정은 4개의 나
라로 K는 한국, J는 일본, U는 미국, G는 독일을 나
타내고 있다.

III. 결과 및 고찰

1. 기저귀제품의 중금속 함량방법

Table 1은 각각의 중기저귀의 중금속 함량을 제시하고 있다. 중기다는 정량정의하고 추정은 4개의 나
라로 K는 한국, J는 일본, U는 미국, G는 독일을 나
타내고 있다.
Table 1. Concentration of heavy metals in the diapers produced by Korea, Japan, USA and Germany (ppm)

<table>
<thead>
<tr>
<th></th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>J1</th>
<th>J2</th>
<th>J3</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb</td>
<td>0.144</td>
<td>N.D</td>
<td>0.205</td>
<td>N.D</td>
<td>0.054</td>
<td>15.394</td>
<td>6.427</td>
<td>6.427</td>
<td>11.942</td>
<td>0.073</td>
<td>4.597</td>
</tr>
<tr>
<td>Pb</td>
<td>0.089</td>
<td>N.D</td>
</tr>
<tr>
<td>Cd</td>
<td>0.173</td>
<td>N.D</td>
<td>0.314</td>
<td>N.D</td>
<td>0.022</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>Co</td>
<td>0.021</td>
<td>0.021</td>
<td>0.028</td>
<td>N.D</td>
<td>0.084</td>
<td>1.397</td>
<td>0.025</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>Cu</td>
<td>1.159</td>
<td>0.905</td>
<td>1.134</td>
<td>0.268</td>
<td>0.585</td>
<td>1.304</td>
<td>0.952</td>
<td>0.704</td>
<td>0.429</td>
<td>N.D</td>
<td>0.245</td>
</tr>
<tr>
<td>Ni</td>
<td>0.659</td>
<td>0.345</td>
<td>0.133</td>
<td>0.035</td>
<td>N.D</td>
<td>0.142</td>
<td>0.199</td>
<td>N.D</td>
<td>0.154</td>
<td>N.D</td>
<td>0.191</td>
</tr>
</tbody>
</table>

K: Korea, J: Japan, U: USA, G: Germany, N.D: Not detected

분석항목별로 비교해보면 Sb의 경우 한국사료 중 K2가 검출한계 이하이고 K1(0.144ppm), K3(0.205ppm)는 유사한 값을 나타내고 있고, 일본사료 중 J1이 검출한계 이하이고 J2(0.054ppm), J3(15.394ppm) 중 J3의 값이 다른 나라의 시료보다 계열 같은 값을 나타내고 있다. 미국사료 중 U1(6.427ppm), U2(6.427ppm)가 비슷한 값을 나타내고 U3(11.942ppm)가 세 시료 중 가장 큰 값을 나타내고 있다. 독일 시료 중 G1(0.073ppm), G2(4.597ppm)는 서로 큰 차이를 나타내고 있다. 이들 각 나라별의 Sb 함량의 결과를 비교한 바 미국의 시료가 전체적으로 높은 값을 나타내고 있음을 알 수 있다.

As와 Hg의 경우는 4개국의 모든 시료가 검출한계 이하이고 Pb의 경우 K1(0.089ppm)을 제외하고 모든 시료가 검출한계 이하였다.

Cd의 경우 K1(0.173ppm), K3(0.3314ppm)을 제외한 모든 시료가 검출한계 이하였고, Cu의 경우 J2(1.073ppm)를 제외한 모든 시료가 검출한계 이하였다.

Co의 경우 한국 사료 모두와 일본 사료 중 J1, J2가 검출한계 이하이고 J3(0.084ppm)가 검출되었다. 미국 사료 중 U1(1.397ppm), U2(0.025ppm)가 검출되었고, U3는 검출한계 이하였고, U1의 값이 다른 나라의 시료보다 큰 값을 나타내고 있다. 독일 사료는 전부 검출한계 이하였다.

Cu의 경우 한국 사료는 K1(1.158ppm), K2(0.905ppm), K3(1.134ppm)가 서로 유사한 값으로 검출되었고, 일본사료 중 J1(0.268ppm), J2(0.585ppm), J3(1.304ppm) 모두 검출되었다. 미국 사료 중 U1(0.952ppm), U2(0.704ppm), U3(0.429ppm) 모두 검출되었다. 독일 사료 중 G1은 검출한계 이하이고 G2(0.24ppm)가 다른 나라의 값보다 낮은 값을 검출되었다.

Ni의 경우 한국 사료에서는 모두, 일본사료 중 J2, 미국 사료 중 U2, 독일 사료 중 G1을 제외한 시료에서 검출되었다.

나라별로 비교해보면 독일의 G1의 시료가 Sb에서 0.073ppm이 검출되었을 뿐 다른 분석항목에 대해서 모두 검출한계 이하였다. 일본의 J1의 시료는 Cu가 0.268ppm, Ni가 0.035ppm이 검출되었을 뿐 다른 분석항목에 대해서 모두 검출한계 이하였다. 미국의 시료는 다른 나라보다 검출빈도도 높고 검출된 각 항목의 값들이 높은 경향을 보여주고 있다.

검출된 값들은 환경기준치와 비교해보면 기준치 이하였음.

2. 인공소변의 용출실험에 의한 종류의 함량 분석

1) 3시간 용출실험

Table 2는 각국의 종이기저귀의 인공소변에서 3시간 용출에 의한 종류의 항생제를 제시하고 있다. 측정 항목별로 비교해보면 As, Pb, Cd, Co, Ni, Hg는 검출한계 이하였다. Sb의 경우 한국 사료는 K1(0.079ppm), K2(0.055ppm), K3(0.035ppm) 모두 검출되었으며, 일본사료 중 J1(0.091ppm), J3(0.069ppm)가 검출되었고, J2는 검출한계 이하였다. 미국 사료는 U1(0.059ppm), U2(0.170ppm), U3(0.175ppm) 모두 시료에서 검출되었다. 독일의 시료는 G1(0.166ppm), G2(0.179ppm) 모두 검출되었다. 하지만 검출된 것 모두 Oeko-Tex Standard 100의 기준치인 30.0ppm보다 낮은 값을 나타내고 있다.

Co의 경우 모든 나라의 시료 모두 비슷한 값으로 검
출되었다. 한국 시료는 K1(0.267ppm), K2(0.260 ppm), K3(0.320ppm) 모두 검출되었다. 일본시료 중 J1(0.292 ppm), J2(0.218ppm), J3(0.193ppm)도 검출 되었다. 미국 시료는 U1(0.255ppm), U2(0.221ppm), U3(0.313ppm)로 검출되었다. 독일의 시료로 G1(0.255ppm), G2(0.246 ppm)도 검출되었다. 하지만 검출된 것 모두 Oeko-Tex Standard 100의 Cr의 기준치인 1.0ppm보다 낮은 값을 나타내고 있다.

Cu의 경우 독일의 두 시로와 K2, J3, U3는 검출한 계 이하였고, K1(0.133ppm), K3(0.101ppm), J1(0.180 ppm), J2(0.066ppm), U1(0.078ppm), U2(0.054ppm) 가 검출되었으나 Oeko-Tex Standard 100의 Cu기준치인 25ppm보다 모두 낮은 값을 나타내고 있다.

2) 6시간 용출실험

Table 3은 각국의 종이기저귀의 안전소변에서 6시간 용출한 결과를 나타내고 있다. 측정항목별로 비교해보면 Sh, As, Cd, Co, Hg는 검출하게 되었다. Pb의 경우 한국시료 중 K3(0.068ppm)만이 검출되었으며 다른 시료들은 검출하게 되었다. Cr의 경우 한국시료 중 K1(0.150ppm), K2(0.142ppm), K3(0.202 ppm)는 다른 나라의 시료보다 높은 경향을 나타냈으며, 일본시료인 J1(0.030ppm), J2(0.093ppm), J3(0.100 ppm)도 검출되었다. 미국시료 U1(0.132ppm), U2 (0.063 ppm), U3(0.110ppm)도 검출되었다. 독일의 시료는 G1(0.095ppm), G2(0.079ppm)가 검출되었다. 하지만 검출된 것 모두 Oeko-Tex Standard 100의 기준치인 1.0ppm보다 낮은 값을 나타내고 있다.

Cu의 경우, 한국시료 중 K1(0.063ppm), K2(0.137 ppm), K3(0.202ppm)가 검출되었고, 일본시료 중 J1 (0.217ppm), J2(0.130ppm), J3(0.221ppm)도 검출되었

Table 2. Concentration of extractable heavy metals in the diapers produced by Korea, Japan, USA and German (3hours) (ppm)

<table>
<thead>
<tr>
<th></th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>J1</th>
<th>J2</th>
<th>J3</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb</td>
<td>0.079</td>
<td>0.055</td>
<td>0.035</td>
<td>0.091</td>
<td>N.D</td>
<td>0.069</td>
<td>0.059</td>
<td>0.170</td>
<td>0.175</td>
<td>0.166</td>
<td>0.179</td>
</tr>
<tr>
<td>Cr</td>
<td>0.267</td>
<td>0.260</td>
<td>0.320</td>
<td>0.292</td>
<td>0.218</td>
<td>0.193</td>
<td>0.255</td>
<td>0.221</td>
<td>0.313</td>
<td>0.255</td>
<td>0.246</td>
</tr>
<tr>
<td>Cu</td>
<td>0.133</td>
<td>0.101</td>
<td>0.180</td>
<td>0.066</td>
<td>N.D</td>
<td>0.078</td>
<td>0.054</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
</tbody>
</table>

K: Korea, J: Japan, U: USA, G: German, N.D: not detected

Table 3. Concentration of extractable heavy metals in the diapers produced by Korea, Japan, USA and German (6hours) (ppm)

<table>
<thead>
<tr>
<th></th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>J1</th>
<th>J2</th>
<th>J3</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>N.D</td>
<td>0.068</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>Cr</td>
<td>0.150</td>
<td>0.142</td>
<td>0.202</td>
<td>0.030</td>
<td>0.093</td>
<td>0.100</td>
<td>0.132</td>
<td>0.063</td>
<td>0.110</td>
<td>0.095</td>
<td>0.079</td>
</tr>
<tr>
<td>Cu</td>
<td>0.063</td>
<td>0.137</td>
<td>0.202</td>
<td>0.217</td>
<td>0.130</td>
<td>0.221</td>
<td>0.193</td>
<td>0.060</td>
<td>0.169</td>
<td>0.089</td>
<td>0.084</td>
</tr>
<tr>
<td>Ni</td>
<td>0.033</td>
<td>0.080</td>
<td>0.140</td>
<td>0.078</td>
<td>0.114</td>
<td>0.119</td>
<td>0.104</td>
<td>0.059</td>
<td>0.112</td>
<td>0.100</td>
<td>0.088</td>
</tr>
</tbody>
</table>

K: Korea, J: Japan, U: USA, G: German, N.D: not detected
다. 미국시료는 U1(0.193ppm), U2(0.060ppm), U3 (0.169ppm)도 검출되었다. 독일의 시료는 G1(0.089ppm), G2(0.084ppm)도 검출되었다. 하지만 검출된 것 모두 Oeko-Tex Standard 100의 기준치인 25ppm보다 낮은 값을 나타내고 있다.

Ni의 경우 한국시료 중 K1(0.033ppm), K2(0.080ppm), K3(0.140ppm)가 검출되었다. 일본시료 중 J1(0.078ppm), J2(0.114ppm), J3(0.119ppm)도 검출되었다. 미국시료는 U1(0.104ppm), U2(0.059ppm), U3 (0.112ppm)도 검출되었다. 독일의 시료는 G1(0.100ppm), G2(0.088ppm)도 검출되었다. 하지만 검출된 것 모두 Oeko-Tex Standard 100의 기준치인 1.0ppm보다 낮은 값을 나타내고 있다.

3. 24시간 용출실험

Table 4는 각국의 키치커리의 인공소변에서 24시간 용출한 결과를 나타내고 있다.

측정항목별로 비교해보면 As, Cd, Cd, Co, Hg는 각국 시료 모두 검출한 결과를 나타내고 있다.

Sb의 경우 J1(0.063ppm), U2(0.056ppm)만이 검출되었고 다른 시료들은 검출한 결과를 나타내고 있다. 하지만 검출된 것도 Oeko-Tex Standard 100의 기준치인 30.0ppm보다 낮은 값을 나타내고 있다.

Pb의 경우, 한국 시료는 모두 검출한 결과를 나타내고, 일본시료 중 J1(0.053ppm), J2(0.069ppm)가 검출되었으며 J3는 검출한 결과를 나타내고 있다. 미국시료 중 U1, U3는 검출한 결과를 나타내고, U2(0.088ppm)만이 검출되었 다. 독일의 경우 G1(0.059ppm)이고 G2는 검출한 결과를 나타내고 있다. 하지만 검출된 것도 Oeko-Tex Standard 100의 기준치인 0.2ppm보다 낮은 값을 나타내고 있다.

Cr의 경우 모든 나라의 시료에서 검출되었고 서로 비슷한 값을 나타내고 있으나 Oeko-Tex Standard 100의 기준치인 1.0ppm보다 낮은 값을 나타내고 있다.

Cu의 경우 일본시료와 독일의 시료의 검출량이 높은 경향을 나타내고 있으나 검출된 것 모두 Oeko-Tex Standard 100의 기준치인 25ppm보다 낮은 값을 나타내고 있다.

Ni의 경우 한국 시료의 검출량이 다른 나라에 비해 낮은 값을 나타내고 있으며 독일의 검출량이 높게 나타내고 있음을 알 수 있다. 하지만 검출된 것 모두 Oeko-Tex Standard 100의 기준치인 1.0ppm보다 낮은 값을 나타내고 있다.

각각의 시간대별 용출 실험 결과를 통해 각 시료의 시간대에서의 검출량의 경향을 파악할 수 있었다.

Table 4. Concentration of extractable heavy metals in the diapers produced by Korea, Japan, USA and Germany (24hours)

<table>
<thead>
<tr>
<th></th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>J1</th>
<th>J2</th>
<th>J3</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>0.063</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>As</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>0.069</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>Pb</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>0.053</td>
<td>0.069</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>Cr</td>
<td>0.198</td>
<td>0.169</td>
<td>0.158</td>
<td>0.209</td>
<td>0.164</td>
<td>0.111</td>
<td>0.191</td>
<td>0.152</td>
<td>0.169</td>
<td>0.195</td>
<td>0.159</td>
</tr>
<tr>
<td>Cu</td>
<td>0.052</td>
<td>0.088</td>
<td>0.189</td>
<td>0.160</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>0.052</td>
<td>0.111</td>
</tr>
<tr>
<td>Ni</td>
<td>0.068</td>
<td>0.084</td>
<td>0.105</td>
<td>0.133</td>
<td>0.132</td>
<td>0.097</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>0.088</td>
<td>0.134</td>
</tr>
</tbody>
</table>

K : Korea J : Japan U : USA G : German N.D: not detected
동안의 지속적인 용출실험 결과는 검출한지 이래로 분석되었다. 이와 같은 현상은 Cr의 경우에도 유사하게 나타나는데 3시간 용출시험 뒤의 분석 값이 6시간 24시간 뒤에 분석한 값에 비하여 현저히 높은 값이 나타난다. 이와 반면 Cu나 Ni의 경우는 반대의 경향을 보이는데, 초기 반응시간(6시간 용출)보다 지속적인 반응에서 점차 대부분의 중이 기저귀에서 증가하는 현상을 보였다.

일반적으로 중이기저귀와 이와 유사한 제품들의 성능은 강한 용출력을 기반에 바탕으로 하는 중간층목재용슈트에 대하여 결정되는데, 용출층 목재분열특성에 의하여 인공나 자연상태의 노동에 포함되어 있는 수분을 비롯한 기타무기원소들을 흡수하는 경향이 달라지게 된다.

유사한 예로서 중간층목재용품을 고체표면의 표면 혼탁변색에 대하여 제거하기 위해 네이트이전이 이와 같이 표면 표면 특성을 이용하여 제거하기 하여 중간층목재용품을 가장 많이 흡착하는 표면을 사용하게 된다.

본 연구결과에서 나타난 초기 용출 시도시간의 Sh 및 Cr 등 중간층목재용품의 차별적인 용출 현상이 시간의 경과에 따라 낮은 것으로 나타나게 된 것은 용출에 의하여 용해(인공나 자연상태)으로 표면을 이루기보다 강한 혼탁현상에 의하여 중이기저귀의 혼탁 현상을 이룬 것으로 것으로 보인다.

본 연구의 결과로부터 초기 용출시의 Sh와 Cr은 용출시간이 경과함에 따라 저하된 것은 용출에 의해 용액으로의 표면이 표면으로의 표면이 되기보다 강한 혼탁현상에 의하여 중이기저귀의 혼탁 현상을 나타내었다. 반대로 Cu와 Ni는 초기반응시간보다 지속적인 반응에 의해 증가하는 현상을 나타내었다. 일반적으로 중이기저귀와 이와 같은 제품의 성능은 강한 용출력을 기반에 바탕으로 하는 중간층목재용슈트에 의해 중이기저귀의 혼탁현상에 의해 중이기저귀의 혼탁현상에 의해 중간층목재용슈트의 혼탁현상에 의해 중간층목재용슈트의 혼탁현상으로도 흡수하는 경향이 다르다.

IV. 결론

본 연구는 일회용기저귀의 무기화물품에 대한 유해성 분석, 평가를 한국(3개사), 일본(3개사), 미국(3개사), 독일(2개사)의 시료를 대상으로 일회용기저귀 자체 내의 중간층목재용슈트와 인공소변 해에서 3시간, 6시간, 24시간의 용출에 의한 중간층목재용슈트를 분석하였다. 그 분석 결과는 다음과 같다.

1. 각각의 중이기저귀의 중간층목재용슈트는 Sh, Cu, Ni의 경우 과반수 이상의 시료에서 검출되었고, As, Pb, Cd, Cr, Co, Hg는 검출빈도가 낮아서 검출한지 이하었다. 나라별로 비교해보면 한국의 K1, K3과 J3은 5 항목 이상에서 검출되었고, 독일 시료는 검출항목도 검출빈도도 적었으며 환경기준과 비교해보면 기준치 이하였으며 아주 비량에 불과했다.

2. 각각의 중이기저귀의 인공소변에서 3시간 용출한 결과로 Cr는 모든 시료에서 보다는 높이 검출되었으며, Sh, Cu, Ni보다 검출되었다. 그 외 항목은 검출한지 이하하였다. 나라별로 비교해보면 전체적으로 유사한 경향을 나타내고 있다. 끝까지 표준 100의 기준치보다 낮았다.

3. 각각의 중이기저귀의 인공소변에서 6시간 용출한 결과로 Cr, Cu는 3시간의 결과로는 검출되지 않았다. Ni는 모든 시료에서 검출되었다. 또한 시간의 경과에 따라서 모든 시료로부터 검출된 Sh와 그 외 항목은 검출한지 이하하였다. 나라별로 비교해보면 전체적으로 유사한 경향을 나타내고 있다. 끝까지 표준 100의 기준치보다 낮았다.

4. 각각의 중이기저귀의 인공소변에서 24시간 용출한 결과로는 6시간의 결과와 비슷하나 Cr, Cu, Ni는 많은 시료에서 검출되었다. 또한 Sh는 J1과 U2에서 검출되었다. Pb는 J1, J2, U1, G1에서 검출되었다. 나라별로 비교해보면 6시간의 결과보다는 높게 검출되었으나 3시간의 결과와 비슷하게 검출되었지만 다른 폐인으로 검출되었다. 또한 모든 검출된 값은 끝까지 표준 100의 기준치보다 낮았다. 그러므로 본 연구에서 분석한 유해중간층목재용품에 대한 인체 유해성은 없는 것으로 판단되었다.

본 연구에서 중점적으로 고찰된 Sh, Cu, Ni 등의 유해중간층목재용품 중이기저귀로부터 용출된 인공소변 또는 소변에 용출되어 있는 상태와 중이기저귀의 흡착층에 흡착된 상태의 어느 측면이가 실제 인체에 흡수되는지 파악하기까지의 연구는 여러 다른 조건에서 검토 되어져야 한다고 생각된다.

참고문헌

