DOI QR코드

DOI QR Code

Effect of Reactive Oxygen Species on the Formation of Nε-(carboxymethyl)lysine, an Endproduct of Maillard Reaction of Proteins

단백질의 Maillard 반응의 최종산물인 CML 형성에 미치는 ROS의 영향

  • Lee, Jong-Sun (Dept. of Biotechnology, Yonsei University) ;
  • Yang, Ryung (Dept. of Biotechnology, Yonsei University) ;
  • Shin, Dong-Bum (Dept. of Food Science and Nutrition, Cheju National University)
  • 이종선 (연세대학교 생명공학과) ;
  • 양융 (연세대학교 생명공학과) ;
  • 신동범 (제주대학교 식품영양학과)
  • Published : 2004.01.01

Abstract

The effect of reactive oxygen species (ROS) on the formation of $N^{\varepsilon}$-(carboxymethly)lysine (CML). one of the endproducts in the Maillard reaction of protein (or glycation), was investigated. Glyoxal, a main precursor of CML formation, was produced from both glucose and fructose during their autoxidation. The transition metal ion showed to involve in the formation of glyoxal by the metal catalyzed oxidation, suggesting that ROS accelerated the reducing sugar autoxidation. The stimulative effect of ROS on the autoxidation was more prominent in glucose than in fructose. Polyunsaturated acids (PUFAs) were shown to form glyoxal by peroxidation in proportion to the degree of unsaturation, but ROS did not affect on PUFA peroxidation. Ascorbic acid also lysine (CMHL) in the model system using hippuryl lysine and glucose had a significant effect on ROS, whereas it had no effect on ROS using glyoxal as a reactant. Almost the same trend was obtained by the analysis of antigen coated indirect noncompetitive ELISA using monoclonal antibody (6D12). These data indicated that ROS affected glucose autoxidation as well as mediated both CML and glyoxal formation, but did not affect the reactive compounds such as fructose, PUFAs and ascorbic acid.

단백질의 Maillard 반응의 최종산물의 하나인 $N^{\varepsilon}$-car-boxy methyl lysine(CML)의 형성에 미치는 reactive oxygen species(ROS)의 영향을 살펴보았다. Glucose와 fructose는 자동산화과정을 통하여 CML 형성의 주된 propagator인 $\alpha$-dicarbonyl 화합물은 물론 glyoxal을 생성시키는 것이 확인되었다. 또한 이 과정은 ROS를 형성하는 천이금속이온에 의해 촉진되는 산화과정임을 알 수 있었다. 반응성이 높은 fructose에 비해 glucose의 경우가 ROS의 영향이 더욱 현저하게 나타났다. 불포화 지방산도 glyoxal을 형성하고 있었으며, 불포화도가 클수록 glyoxal 생성량이 빠르게 나타났으나 ROS의 영향은 비교적 작게 나타났다. Ascorbic acid 역시 ROS와는 무관하게 glyoxal을 생성하였다. 이는 ROS의 영향이전에 이들 물질들의 반응성이 매우 높다는 것을 의미하고 있다. Hippury lysine을 이용한 model system에서도 glucose로부터의 $N^{\varepsilon}$-carboxymethyl hipuryllysine(CMHL) 형성에서는 ROS의 영향이 높게 나타났으나, 반응성이 매우 높은 glyoxal에 의한 CMHL 생성에는 ROS의 영향이 거의 나타나지 않았다. CML에 특이적으로 결합하는 monoclonal antibody(6D12)를 이용한 antigen coated noncompetitive indirect ELISA 분석을 통해서 CML생성에 미치는 ROS의 영향을 살펴본 결과 대체로 위의 결과와 비슷한 경향을 나타내었다. 따라서 반응성이 높은 물질일수록 CML 형성에 ROS의 영향이 작게 나타남을 알 수 있었다.

Keywords

References

  1. J Agric Chem Soc v.1 Chemistry of browning reactions in model systems. Hodge,J.E. https://doi.org/10.1021/jf60015a004
  2. Biochemistry v.34 Mechanism of sutoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Wells-Knecht,K.J.;Zyzak,D.V.;Litchfield,J.E.;Thorpe,S.R.;Baynes,J.W. https://doi.org/10.1021/bi00011a027
  3. Biochemistry v.34 $N^ε$-(Carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue protein Reddy,S.;Bichler,J.;Wells-Knecht,K.J.;Thorpe,S.R.;Baynes,J.W. https://doi.org/10.1021/bi00034a021
  4. Agr Biol Chem v.52 Polymerization of proteins caused by reaction with sugars and the formation of 3-deoxyglucosone under physiological conditions. Shin,D.B.;Hayase,F.;Kato,H. https://doi.org/10.1271/bbb1961.52.1451
  5. Kor J Gerontol v.16 Identification of glyoxal as the reactive intermediates during autoxidative glycosylation of glucose and fructose. Eum,S.Y.;Chung,J.O.;Shin,D.B.;Yang,R.
  6. Diabetes v.40 Effect of diabetes and aging on carboxymemyllysine levels in human urine. Knecht,K.J.;Dunn,J.A.;McFarland,K.F.;McCance,D.R.;Lyons,T.J.;Thorpe,S.R.;Baynes,J.W. https://doi.org/10.2337/diabetes.40.2.190
  7. Am J Kidney Int v.26 Advanced glycosylation end products in diabetic renal and vascular disease. Bucala,R.;Vlassara,H. https://doi.org/10.1016/0272-6386(95)90051-9
  8. Nephrol Dial Transplant v.11 no.Suppl.5 Structure of advanced Maillard reaction products and their pathological role. Monnier,V.M.;Nagaraj,R.H.;Portero-Otin,M.;Glomb,M.;Elgawish,A.H.;Sell,D.R.;Friedlander,M.A.
  9. J Biol Chem v.261 Identification of $N^ε$-(Carboxymethyl)lysine as a degradation product of fructoselysine in glycated protein Ahmed,M.U.;Thorpe,S.R.;Baynes,J.W.
  10. Eur J Biochem v.210 Mechanism of the degradation of non-enzymatic glycated proteins under physiological conditions. Smith,P.R.;Thornalley,P.J. https://doi.org/10.1111/j.1432-1033.1992.tb17474.x
  11. Biochem Biophys Res Commun v.257 Amadorin: novel post-Amadori inhibitors of advanced glycation reactions. Khalifah,R.G.;Baynes,J.W.;Hudson,B.G. https://doi.org/10.1006/bbrc.1999.0371
  12. J Biol Chem v.270 Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Mainard reaction. Glomb,M.A.;Monnier,V.M. https://doi.org/10.1074/jbc.270.17.10017
  13. Biochemistry v.34 Pathway of formation of glycoxidation products during glycation of collagen. Wells-Knecht,M.C.;Thorpe,S.R.;Baynes,J.W. https://doi.org/10.1021/bi00046a020
  14. Carbohydrates Res v.208 3-Deoxy-L-glycero-pentos-2-ulose(3-deoxy-L-xylosone) and L-threo-pentos-2-ulosel-xylosone as intermediates in the degradation of L-ascorbic acid. Shin,D.B.;Fearher,M.S.
  15. Biohim Biophys Acta v.1214 Reinvestigation of lipid peroxidation of linolenic acid. Mlakar,A.;Spiteller,G. https://doi.org/10.1016/0005-2760(94)90046-9
  16. Atherosclerosis v.144 $N^ε$-(Carboxymethyl)lysine in atherosclerotic vascular lesions as a marker for local oxidative stress. Nerlich,A.G.;Schleicher,E.D.
  17. Diabetes v.40 Role of oxidative stress in development of complications in diabetes. Bynes,J.W. https://doi.org/10.2337/diabetes.40.4.405
  18. Biochem Biophys Res Commun v.234 Hydroxyl radical mediates $N^ε$-(Carboxymethyl)lysine formation from Amadori products. Nagai,R.;Ikeda,K.;Higashi,T.;Sano,H.;Jinnouchi,Y.;Araki,T.;Horiuchi,S. https://doi.org/10.1006/bbrc.1997.6608
  19. J Biol Chem v.264 Nonenzymatic glycation of bovine serum albumin by fructose (fructation) Suarez,G.;Rajarm,R.;Oronsky,A.L.;Gawinowica,M.A.
  20. J Biol Chem v.267 Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Ookawara,T.;Kawamura,N.;Kitagawa,Y.;Taniguchi,N.
  21. Biochem Biophys acta v.760 Detection of nonenzymatic browning products in the human lens. Monnier,V.M.;Cerami,A. https://doi.org/10.1016/0304-4165(83)90129-0
  22. J Am Geria Soc v.33 Hypothesis glucose as a mediator of aging. Cerami,A.
  23. FEBS Lett v.463 Glucose degradation product methlglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. Inagi,R.;Miyata,T.;Yamamoto,T.;Suzuki,D.;Urakami,K.;Salto,A.;Strihou,C.Y.;Kurokawa,K. https://doi.org/10.1016/S0014-5793(99)01631-2
  24. J Biol Chem v.271 The advanced glycation end product, $N^ε$-(Carboxymethyl)lysine, is a products of both lipid peroxidation and glycoxidation reactions. Fu,M.X.;Requena,J.R.;Jenkins,A.J.;Lyons,T.J.;Baynes,J.W.;Thorpe,S.R. https://doi.org/10.1074/jbc.271.17.9982
  25. FEBS Lett v.437 Generation of protein carbonyls by glycoxidation and lipoxidation reactions with autoxidation products of ascorbic acid and polyunsaturated fatty acids. Miyata,T.;Inagi,R.;Asahi,K.;Yamada,Y.;Horie,K.;Sakai,H.;Uchida,K.;Kurokawa,K. https://doi.org/10.1016/S0014-5793(98)01079-5
  26. Biochim Biophys Acta v.1211 α-Hydroxyaldehydes, products of lipid peroxidation. Loidl-Stahlhofen A.;Spiteller,G. https://doi.org/10.1016/0005-2760(94)90264-X
  27. Opthalmic Res v.29 Ascorbic acid and eye lens Varna,S.D.;Richards,R.D.
  28. Biochemisty v.30 Age-dependent accumlation of $N^ε$-(Carboxymethyl)lysine and $N^ε$-(Carboxymethyl) hydroxylysine in human skin collagen. Dunn,J.A.;McCance,D.R.;Thorpe,S.R.;Lyons,T.J.;Baynes,J.W. https://doi.org/10.1021/bi00219a007
  29. Int J Biochem Cell Biol v.31 Oxygen is not required for browning and crosslinking of protein by pentoses; releveance to Maillard reactions in vivo. Litchfield,J.E.;Thorpe,S.R.;Baynes,J.W. https://doi.org/10.1016/S1357-2725(99)00091-6
  30. J Immunol Methods v.215 Immunochemical approaches to AGE-structures; characterization of anti-AGE antibodies Ikeda,K.;Nagai,R.;Sakamoto,T.;Sano,H.;Araki,T.;Sakata,N.;Nakayama,H.;Yoshida,M.;Ueda,S.;Horiuchi,S. https://doi.org/10.1016/S0022-1759(98)00064-7

Cited by

  1. 작약 및 포제작약의 최종당화산물 억제를 통한 피부 주름 개선 효과 vol.32, pp.4, 2004, https://doi.org/10.6116/kjh.2017.32.4.53
  2. 멸치볶음의 조리방법에 따른 Nε-(carboxymethyl)lysine 함량 변화 vol.50, pp.5, 2004, https://doi.org/10.5657/kfas.2017.0481