DOI QR코드

DOI QR Code

Computer simulation of the removal of the 0-th order diffraction by using fourier transform in digital holography

디지털 홀로그래피에서 퓨리어 변환을 이용한 0차 회절광의 제거와 위상홀로그램의 생성에 대한 전산 모사

  • Kim, Sung-Kyu (Imaging Media Center, Korea Institute of Science and Technology) ;
  • Park, Min-Chul (Photonics Research Center, Korea Institute of Science and Technology) ;
  • Lee, Seok (Photonics Research Center, Korea Institute of Science and Technology) ;
  • Kim, Jae-Soon (Physics, Seoul National University) ;
  • Son, Jung-Young (Electric Information Communication Lab, Hanyang University)
  • 김성규 (한국과학기술연구원 영상미디어센터) ;
  • 박민철 (한국과학기술연구원 광기술센터) ;
  • 이석 (한국과학기술연구원 광기술센터) ;
  • 김재순 (서울대학교 물리학과) ;
  • 손정영 (한양대학교 전기정보통신연구소)
  • Published : 2004.02.01

Abstract

A computer simulation about removal of the 0-th order diffraction is achieved by using numerical reconstruction in digital holography and the Fourier transform method. A light intensity distribution hologram is generated through numerical calculation of the interference pattern. Additionally a phase hologram without the 0-th order diffraction is generated. The removal function for elimination of the 0-the order diffraction is introduced and the numerical reconstructions with several conditions for the removal of the 0-th order diffraction and the production of high quality numerically reconstructed images are tested and compared. The removal function is proven to be more effective at the suppression of the 0-th order diffraction compared with the DC suppression method.

CCD의 입력면에서의 물체광과 참조광의 간섭을 수치적 방법으로 생성한 광 강도 분포 홀로그램을 대상으로 퓨리어 변환방법을 이용한 0차 회절광의 제거를 전산 모사 방법으로 구현하였고, 0차 회절광 성분이 제거된 광 강도 분포와 위상을 갖는 홀로그램을 생성하였다. 그리고 그 결과를 수치적 재생 방법을 사용하여 0차 회절광 성분의 제거를 확인하였다. 그리고 퓨리어 변환 방법에 의한 0차 회절광 성분이 제거된 위상홀로그램의 생성이 가능하다. 0차 회절광을 제거하기 위한 제거 함수를 도입하였고 제거 영역에 따른 0차 회절광의 제거와 재생되는 실상의 정보 손실 정도를 비교하였고, 기존의 방법에 비하여 효과적임을 증명하였다.

Keywords

References

  1. Appl. Phys. Lett. v.11 Digital image formation form electronically detected holograms J.W.Goodman;R.W.Lawrence https://doi.org/10.1063/1.1755043
  2. Sov. Phys. Tech. Phys. v.17 Reconstruction of a hologram with a computer M.A.Kronrod;N.S.Merzlyakov;L.P.Yaroslavskii
  3. J. Opt. Soc. Am. A v.11 Direct phase determination in hologram interferometry with use of digitally recoreded holograms U.Schnars https://doi.org/10.1364/JOSAA.11.002011
  4. Appl. Opt. v.34 Digital recording and numerical reconstruction of holo-grams: a new method for displaying light in flight J.Pomarico;U.Schnars;H.J.Hartmann;W.Juptner https://doi.org/10.1364/AO.34.008095
  5. Appl. Opt. v.38 Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology C.Wagneer;S.Seebacher;W.Osten;W.Juptner https://doi.org/10.1364/AO.38.004812
  6. App. Opt. v.38 Fast namerical reconstruction technique for high-resolution hybrid holographic microscopy Y.Takaki;H.Ohzu https://doi.org/10.1364/AO.38.002204
  7. Opt. Eng. v.35 no.4 Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum U.Schnars;T.Kreis;W.Juptner
  8. 한국광학회지 v.14 no.3 디지털 홀로그래피에서의 공초점 렌즈계를 이용한 보다 큰 물체의 기록 김성규;최현희;손정영 https://doi.org/10.3807/KJOP.2003.14.3.244
  9. Opt. Eng. v.36 no.8 Supression of the determ in digital holography T.M.Kreis;W.P.O.Juptner https://doi.org/10.1117/1.601426
  10. Opt. Lett. v.22 no.16 Phase-shifting holography I.Yamaguchi;T.Zhang https://doi.org/10.1364/OL.22.001268
  11. Appl. Opt. v.38 no.23 Hybrid holographic microscopy free of conjugate and zero-order images Y.Takaki;H.Kawai;H.Ohzu https://doi.org/10.1364/AO.38.004990
  12. Introduction to Fourier Optics(2nd ed.) J.W.Goodman