Activity of Antioxidant Enzymes during Senescence in Rice Seedlings

  • Lee, Cheol-Ho (Department of Crop Science & Biotechnology, Jinju National University) ;
  • Lee, Shin-Woo (Department of Crop Science & Biotechnology, Jinju National University) ;
  • Chun, Hyun-Sik (Department of Crop Science & Biotechnology, Jinju National University) ;
  • Moon, Byoung-Yong (Department of Biology, Inje University) ;
  • Lee, Byeong-Seok (Department of Molecular Biology, Dong-Eui University) ;
  • Koo, Jeung-Suk (Department of Molecular Biology, Dong-Eui University) ;
  • Lee, Chin-Bum (Department of Molecular Biology, Dong-Eui University)
  • Published : 2004.03.01

Abstract

Activity of senescence-induced antioxidant enzymes in the detached rice seedlings (Oryza sativa L. cv. Dongjin) was examined. The levels of $\textrm{H}_2\textrm{O}_2$ content and peroxidase (POD) activity were gradually increased during leaf senescence, whereas catalase activity was decreased. The activity of superoxide dismutase (SOD) was increased, and ascorbate peroxidase (APX) and glutathione reductase (GR) were slightly increased until 3d and 4d of dark induced-senescence, and thereafter were decreased. The activation of all SOD isoforms showed a significant decrease after 6d and 7d. After 4d to 7d of dark senescence, there was a significant effect in enhancing the activity of APX-12 and -13 isoforms as compared with light, despite similar levels in total APX activity. GR-8 and -10 isoforms were more effective in leaf senescence at 4d to 7d, particularly with respect to dark-induced senescence. These results suggest that the metabolism of active oxygen species such as $\textrm{H}_2\textrm{O}_2$ is dependent on various functionally interrelated antioxidant enzymes such as catalase, peroxidase, SOD, APX and GR.

Keywords

References

  1. Aebi, H. 1974. Catalase. In: H. U. Bergmeyer (Ed.). Methodes of Enzymatic Analysis. Academic Press. NY 2 : 673-684
  2. Asada, K. 1992. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85 : 235-241 https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  3. Bailly, C; F. Corbineau, and W. G. van Doom. 2001. Free radical scavenging and senescence in Iris tepals, Plant Physiol Biochem. 39 : 649-656 https://doi.org/10.1016/S0981-9428(01)01289-X
  4. Beauchamp, C. and 1. Fridovich. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels, Anal Biochem. 44 : 276-287 https://doi.org/10.1016/0003-2697(71)90370-8
  5. Bernt, E. and H. U. Bergmeyer. 1974. Inorganic peroxides, In: H.U. Bergmeyer, (Ed.). Methods of enzymatic analysis, Vol. 4, Academic Press. NY. 1974,2246-2248
  6. Beyer, W. F. and 1. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161 : 559-566 https://doi.org/10.1016/0003-2697(87)90489-1
  7. Chen, G. X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30 : 987-998
  8. del Rio, L. A., G. M. Pastori, J. M. Palma, L. M. Sandalio, F. Sevilla, F. J. Corpas, A. Jimenez, E. Lopez-Huertas, and Hernandez, J. A 1998. The activated oxygen role of peroxisomes in senescence. Plant Physiol, 116 : 1195-1200 https://doi.org/10.1104/pp.116.4.1195
  9. Foyer, C. H., M. Lelandais, and K. J. Kenert. 1994. Photooxidative stress in plants. Physiol Plant. 92 : 696-717 https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  10. Gepstein, S. 1988. Photosynthesis, In: Nooden, L. D. and AC. Leopold, (eds.). Senescence and Aging in Plants. Academic Press, NY. 85-109
  11. Hodges, D. M. and C. F. Forney. 2000. The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J. Exp Bot. 51 : 645-655 https://doi.org/10.1093/jexbot/51.344.645
  12. Jimenez, A, J. A., Hernandez, G. Pastori, L. A. del Rio, and F. Sevilla. 1998. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol. 118: 1327-1335 https://doi.org/10.1104/pp.118.4.1327
  13. Kanazawa, S., S. Sano, T. Koshiba, and T. Ushimaru. 2000. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: Comparison with those during darkinduced senescence. Physiologia Plantarum. 109(2) : 211-216 https://doi.org/10.1034/j.1399-3054.2000.100214.x
  14. LaemmIi, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227 : 680-685 https://doi.org/10.1038/227680a0
  15. Lohman, K. N., S. Gan, M. C. John, and R. M. Amasin. 1994. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Plant Physiol. 92 : 322-328 https://doi.org/10.1111/j.1399-3054.1994.tb05343.x
  16. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with Folin phenol regent. J. Bio. Chem. 193: 256-275
  17. McKersie, B. D., J. Murnaghan, K. D. Jones, and S. R. Bowley. 2000. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol. 122 : 1427-1438 https://doi.org/10.1104/pp.122.4.1427
  18. Mittler, R. and B. A. Zilinskas. 1993. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate dependent reduction of nitroblue tetrazolium. Anal Biochem. 212: 540-546 https://doi.org/10.1006/abio.1993.1366
  19. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. TRENDS in Plant Science. 7(9) : 405-410 https://doi.org/10.1016/S1360-1385(02)02312-9
  20. Prochazkova, D., R. K. Sairam, G. C. Srivastava, and D. V. Singh. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science. 161 : 765-771 https://doi.org/10.1016/S0168-9452(01)00462-9
  21. Putter, J. 1974. Peroxidase, In: Bergmeyer, H.U. (Ed.), Methodes of enzymatic analysis. 2, Academic Press. NY. 2 : 685-690
  22. Rao, M. v., G. Paliyath, and D. P. Ormrod. 1996. Ultraviolet-B- and ozone- induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110 : 125-136 https://doi.org/10.1104/pp.110.1.125
  23. Srivalli, B. and R. Khanna-Chopra. 200 I. Induction of new isoforms of superoxide dismutase and catalase enzymes in the flag leaf of wheat during monocarpic senescence. Biochem and Biophysic Res Comm. 288: 1037-1042
  24. Whetherley, P. E. 1950. Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves. New Phytol. 49 : 81-87 https://doi.org/10.1111/j.1469-8137.1950.tb05146.x
  25. Wu, G., R. W.Wilen, A. J. Robertson, and L. V. Gusta. 1999. Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chIoroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiol. 120: 513-520 https://doi.org/10.1104/pp.120.2.513
  26. Ye, Z., R. Rodriguez, A. Tran, H. Hoang, D. de los Santos, S. Brown, and R. L. Vellanoweth. 2000. The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Science. 158: 115-127 https://doi.org/10.1016/S0168-9452(00)00316-2
  27. Yoshimura, K., Y. Yabuta, T. Ishikawa, and S. Shigeoka. 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 123 : 223-233 https://doi.org/10.1104/pp.123.1.223