Surface Imaging of Barley Aleurone Cell by Atomic Force Microscopy

  • Kim, Tae-Wan (Department of Plant Resources Science, Hankyong National University) ;
  • Huh, Kwang-Woon (Department of Plant Resources Science, Hankyong National University) ;
  • Kim, Seung-Hwan (Department of Plant Resources Science, Hankyong National University) ;
  • Ku, Hyun-Hwoi (Department of Plant Resources Science, Hankyong National University) ;
  • Lee, Byung-Moo (Department of Plant Resources, Dongguk University) ;
  • Kim, Jae-Yoon (Division of Biotechnology and Genetic Engineering, Korea University) ;
  • Seo, Yong-Won (Division of Biotechnology and Genetic Engineering, Korea University)
  • Published : 2004.03.01

Abstract

To observe and analysis ultra-microscopically barley aleurone cell surface, atomic force microscope (AFM) was used. Seed coat of early maturing germplasm, eam9, was dehulled and scanned by non-contact mode. We have obtained the high resolution topographic 3-dimensional image of barley aleurone layer with high resolution. These images showed the membrane proteins in barley aleurone cell. One channel protein and numerous peripheral or integral proteins were detected in a area of 100 $\mu\textrm{m}^2$. Furthermore, we found that their widths were ranged from 50 to 750nm and lengths from 0 to 66 $\mu\textrm{m}$. The thickness of aleurone layer was measured by scanning electron microscope. The thickness at early developmental stage was about 16 and then the aleurone cell enlarged upto 57 $\mu\textrm{m}$${\mu}{\textrm}{m}$ at least until 42 days after anthesis. In this study, we firstly reported on the ultrastructural AFM analysis of living aleurone cell as a biological specimen. It was clearly suggested that AFM will become an powerful tool for probing both the structural properties of biological samples.

Keywords

References

  1. Binnig, G. and H. Rohrer. 1983. Surface imaging by scanning tunneling microscopy. Ultramicroscopy 11 : 157-160 https://doi.org/10.1016/0304-3991(83)90231-0
  2. Gallet, X., F, Festy, P. Ducarme, R. Brasseur, and A. Thomas-Sou-marmon.1998. Topological model of membrane domain of the cystic fibrosis transmembrane conductance regulator. J. Mol. Graph. Model. 16: 72- 82 https://doi.org/10.1016/S1093-3263(98)00015-1
  3. Gibson, C. T., B. L. Weeks, C. Abell, T. Rayment, and S. Myhra. 2003. Calibration of AFM cantilever spring constants. Ultramicroscopy 97 : 113-118 https://doi.org/10.1016/S0304-3991(03)00035-4
  4. Hansma, H. G., R. Golan, W. Hsieh, S. L. Daubendiek, and E. T. Kool. 1999. Polymerase activities and RNA structures in the atomic force microscope. J. Struct. Bioi. 127 : 240-247 https://doi.org/10.1006/jsbi.1999.4170
  5. Kusumi, A. and Y Sako. 1996. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8 : 566-574 https://doi.org/10.1016/S0955-0674(96)80036-6
  6. Liu, X. Q., S. Sugiyama, Q. Y Xu, T Kobori, S. Hagiwara, and T. Ohtani. 2003. Atomic force microscopy study of chromosome surface structure changed by protein extraction. Ultramicroscopy. 94 : 217- 223 https://doi.org/10.1016/S0304-3991(02)00292-9
  7. Percec, V. and T. K. Bera. 2002. Cell membrane as a model for the design of semifluorinated ion-selective nanostructured supramo-Iecular systems. Tetrahedron. 58 : 4031-4040 https://doi.org/10.1016/S0040-4020(02)00266-1
  8. Ridout, M. J., M. L. Parker, C. L. Hedley, T. Y. Bogracheva, and V. J. Morris. 2003. Atomic force microscopy of pea starch granules : granule architecture of wild-type parent, r and rb single mutants, and the rrb double mutant. Carbohyd. Res. 338 : 1-13 https://doi.org/10.1016/S0008-6215(02)00449-4
  9. Rinia, H. A., M. M. E. Snel, Jan P. J. M. van der Eerden, and B. de Kruijff. 2001. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS. Lett. 501 : 92-96 https://doi.org/10.1016/S0014-5793(01)02636-9
  10. Tang, H. J., K. Watanabe, and T Mitsunaga. 2002. Characteriza-tion of storage starches from quinoa, barley and adzuki seed. Carbohyd. Polym. 49 : 13-22 https://doi.org/10.1016/S0144-8617(01)00292-2
  11. Tojima, T., Y Yamane, H. Takagi, T Takeshita, T Sugiyama, H. Haga, K. Kawabata, T. Ushiki, K. Abe, T. Yoshioka, and E. Ito. 2000. Three-dimensional characterization of interior structures of exocytotic apertures of nerve cells using atomic force microscopy. Neuroscience 101 : 471-481. https://doi.org/10.1016/S0306-4522(00)00320-1
  12. Vansteenkiste, S. O., M. C. Davies, C. I. Roberts, S. J. B. Tendler, and P. M. Williams. 1998. Scanning probe microscopy of bio-medical interfaces. Prog. Surf. Sci. 57 : 95-136 https://doi.org/10.1016/S0079-6816(98)00014-8
  13. Wang, Z., C. Zhou, C. Wang, L. Wan, X. Fang, and C. Bai. 2003. AFM and STM study of -amyloid aggregation on graphite. Ultramicroscopy 97: 73-79 https://doi.org/10.1016/S0304-3991(03)00031-7
  14. Welti, R. and M. Glaser. 1994. Lipid domains in model and biological membranes. Chem. Phys. Lipids. 73 : 121-137 https://doi.org/10.1016/0009-3084(94)90178-3
  15. Yoshino, T., S. Sugiyama, S. Hagiwara, D. Fukushi, M. Shichiri, H. Nakao, J. M. Kim, T. Hirose, H. Muramatsu, and T Ohtani. 2003. Nano-scale imaging of chromosomes and DNA by scan-ning near-field optical/atomic force microscopy. Ultramicroscopy.97 : 81-87 https://doi.org/10.1016/S0304-3991(03)00032-9