DOI QR코드

DOI QR Code

Multi-Scale Modelling of a Phase Mixture Model and the Finite Element Method for Nanocrystalline Materials

나노결정 재료의 상혼합모델과 유한요소법을 결합한 멀티스케일 모델링

  • Published : 2004.04.01

Abstract

The effect of grain refinement on the plastic deformation behaviour of nanocrystalline metallic materials is investigated. A phase mixture model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. For the grain interior phase two concurrent mechanisms are considered: dislocation glide and mass transfer by diffusion. The proposed constitutive model was implemented into a finite element code (DEFORM) using a semicoupled approach. The finite element method was applied to simulating room temperature tensile deformation of Cu down to the nanoscale grain size in order to investigate the pre- and post-necking behaviour.

Keywords

References

  1. Prog. Mater. Sic. v.33 Nanocrystalline materials H.Gleiter https://doi.org/10.1016/0079-6425(89)90001-7
  2. J. Iron. Steel Inst. v.174 N.J.Petch
  3. Scripata Metall. Mater v.23 On the validity of the Hall-Petch relationship in nanocrystalline materials H.Chokshi;A.Rosen;J.Karch;H.Gleiter https://doi.org/10.1016/0036-9748(89)90342-6
  4. Scripta Metall. Mater v.26 Grain-size dependent hardening and softening of nanocrystalline Cu and Pd G.E.Fougere;J.R.Weertman;R.W.Siegel;S.Kim https://doi.org/10.1016/0956-716X(92)90052-G
  5. Scripta Metall. Mater. v.24 Microhardness and fracture properties of nanocrystalline Ni--P alloy K.Lu;W.D.Wei;J.T.Wang https://doi.org/10.1016/0956-716X(90)90086-V
  6. Scripta Metall. Mater. v.24 Grain Growth in nanocrystalling TiO2 and its relation to vickers hardness and fracture toughness H.J.Hofler;R.S.Averback https://doi.org/10.1016/0956-716X(90)90101-L
  7. Power Metall. v.41 A finite element analysis of mechanical behavior of nanocrystalline copper H.S.Kim;C.Suryanarayana;SJ.Kim;B.S.Chun https://doi.org/10.1179/pom.1998.41.3.217
  8. Scripta Mater. v.39 A composite model for mechanical properties of nanocrystalline materials H.S.Kim https://doi.org/10.1016/S1359-6462(98)00257-7
  9. Acta Mater. v.48 Plastic deformation behaviour of fine grained materials H.S.Kim;Y.Estrin;M.B.Bush https://doi.org/10.1016/S1359-6454(99)00353-5
  10. Mater. Sci. Eng. v.276A A phase mixture model of a particle reinforced composite with fine microstructure H.S.Kim;M.B.Bush;Y.Estrin
  11. Nanostructured Mater. v.12 Ductility of nanocrystalline zirconia based ceramics at low terperatures U.Betz;H.Hahn https://doi.org/10.1016/S0965-9773(99)00265-2
  12. Scripta Mater. v.37 Evidence of room temperature ductillty in nanocrystalline NiAl from biaxial disk bend tests M.S.Choudry;J.A.Eastman;R.J.DiMelfi;M.Dollar https://doi.org/10.1016/S1359-6462(97)00159-0
  13. MRS Bull. no.Feb. Ductility of Nanostructured Materials C.C.Koch;D.G.Morris;L.Lu;A.Inoue
  14. Nanostructured Mater. v.10 Dynamic mechanical properties of a near-nano aluminum alloy processed by equal-channel-angular-extrusion T.Mukai;M.Kawazoe;K.Higashi https://doi.org/10.1016/S0965-9773(98)00113-5
  15. Acta Metall. v.15 Theory of the tensile test E.W.Hart https://doi.org/10.1016/0001-6160(67)90211-8
  16. Acta Mater. v.50 Grain-boundary diffusion creep in nanocrystalline Pd by molecular-dynamics simulation V.Yamakov;D.Wolf;S.R.Phillpot;H.Gleiter https://doi.org/10.1016/S1359-6454(01)00329-9
  17. in Unified Constitutive Laws of Plastic Deformation Y.Estrin;A.S.Krausz(ed.);K.Krausz(ed.)
  18. Acta Mater. v.43 N.Wang;Z.Wang;K.T.Aust;U.Erb https://doi.org/10.1016/0956-7151(94)00253-E
  19. SFTC. DEFORM2D
  20. Appl. Phys. Lett. v.79 Ductility of nanostructured metals H.S.Kim;Y.Estrin https://doi.org/10.1063/1.1426697