Toxicity of Persistent Organic Pollutants, PAHs and TBT, in Zooplankton and Influence on Their Viability

동물플랑크톤에 대한 지속성 유기오염물질 PAHs와 TBT의 독성 및 생존능력에 미치는 영향

  • Jang, Poong-Guk (Southern Coastal Environment Research Division, South Sea Institute, KORDI) ;
  • Shin, Kyung-Soon (Southern Coastal Environment Research Division, South Sea Institute, KORDI) ;
  • Jang, Min-Chul (Southern Coastal Environment Research Division, South Sea Institute, KORDI) ;
  • Park, Dong-Won (Southern Coastal Environment Research Division, South Sea Institute, KORDI) ;
  • Jang, Man (Southern Coastal Environment Research Division, South Sea Institute, KORDI)
  • 장풍국 (한국해양연구원 남해연구소 남해특성연구본부) ;
  • 신경순 (한국해양연구원 남해연구소 남해특성연구본부) ;
  • 장민철 (한국해양연구원 남해연구소 남해특성연구본부) ;
  • 박동원 (한국해양연구원 남해연구소 남해특성연구본부) ;
  • 장만 (한국해양연구원 남해연구소 남해특성연구본부)
  • Published : 2004.03.01

Abstract

We conducted three experiments to estimate the toxicity of POPs (persistent organic pollutants) on two copepod species (Acartia erythraea and A. omorii) and Artemia sp.; (1) 48 h-LC$_{50}$ of A. omorii with the five PAHs [polycyelic aromatic hydrocarbons anthracene, benzo〔a〕pyrene, fluoranthene, phenanthrene, pyrene〕 which were often detected in the Gwangyang Bay, (2) toxicity of benzo〔a〕pyrene and TBT on Artemia in different temperatures (1$0^{\circ}C$, 15$^{\circ}C$, 2$0^{\circ}C$), (3) effects of benzo〔a〕pyrene and TBT on egg Production rate, hatching rate and fecal Pellet Production of two copepod species (A. erythraea and A. omorii) fed on Heterocapsa triquetra (dinoflagellate) exposed in benzo〔a〕pyrene. Toxic chemicals which were most effective to A. omorii were flueranthene (48 h-LC$_{50}$ 19.20 $\mu\textrm{g}$ L$^{-1}$ ) and benzo〔a〕pyrene (48 h-LC$_{50}$ 29.89 $\mu\textrm{g}$ L$^{-1}$ ). The toxi- city of chemicals to Artemia increased when temperature increased. The toxicity of TBT was about 100 times higher than that of benzo〔a〕pyrene at 15$^{\circ}C$. Food materials (Heterocapsa triquetra) exposed in benzo〔a〕pyrene, affected negatively the rate of egg production, hatching rate and the fecal pellet production of the copepods at the high concentration. It is suggested that an increase in the concentration of benzo〔a〕pyrene might offset the production of copepods in marine ecosystems. This study suggests that copepods may be used as n indicator for early warning of the risk of POPs in marine ecosystems.

인간이나 환경에 해로운 영향을 주는 지속성 유기오염물질의 독성을 평가하기 위해서 염분과 온도에 대해 내성이 강한 Acartia 종들과 Artemia을 대상으로 실험하였다. 지속성 유기오염물질인 PAHs와 TBT에 대한 요각류의 독성을 평가하기 위해 3가지의 실험을 실시하였다. 1) 광양만에서 주로 나타나는 5가지 PAHs(anthracene, benzo〔a〕pyrene, fluoranthene, phenanthrene, pyrene)에 대한 A. omorii의 48h-LC$_{50}$ 을 구하였다. 2) Artemia를 이용하여 온도에 따른 benzo〔a〕pyrene과 TBT의 독성의 변화를 측정하였다. 3) PhMs중에서 독성이 강한 benzo〔a〕pyrene에 노출된 먹이를 섭취한 A. erythruea와 A. omorii의 난 생산, 부화율, 고형화된 배설물 양의 변화를 측정하였다. A. omorii에 대한 5가지 PAHs 중에서 fluoranthene (48 h-LC$_{50}$ 19.20 $\mu\textrm{g}$ L$_{-1}$)과 benzo〔a〕pyrene (48h-LC$_{50}$ 29.89$\mu\textrm{g}$ L$_{-1}$)의 독성이 강하게 나타났다. 온도실험에서는 동일한 유해물질을 가지고 실험을 하더라도 온도의 변화에 따라 급격한 독성의 차이가 나타날 수 있고, 유해물질 간에도 온도에 따라서 나타나는 독성에 대한 특성이 다르게 나타났다. 특히 15$^{\circ}C$에서는 TBT (9.982 $\mu\textrm{g}$ L$^{-1}$)의 독성이 benzo〔a〕pyrene (1,173 $\mu\textrm{g}$ L$^{-1}$)의 독성보다 약 100배 정도 더 독성이 강하게 나타났다. Benzo〔a〕pyrene에 노출된 먹이는 요각류의 난 생산, 부화율, 고형화된 배설물 양의 변화에 영향을 주었다. 특히 benzo〔a〕pyrene의 농도 증가는 요각류의 생산력 변동에 영향을 미칠 수 있는 것으로 사료된다. 본 연구는 요각류를 이용하여 해양생태계에 유입되는 지속성 유기오염물질에 대한 위험성을 알리는 지표생물로서 사용할 수 있을 것으로 판단된다.

Keywords

References

  1. 환경오염물질 독성평가 기법에 관한 workshop 난용성/휘발성 물질의유해성 시험방법 이성규
  2. 한국해양연구원. BSPE 819-00-1407-7 남해 특별관리해역의 환경오염 관리모텔 연구-광양만 중심 연구 한국해양연구원
  3. 해양수산부. BSPM 00070-1336-3 전국연안의 지속성 유기물질 오염실태 조사 연구 해양수산부
  4. 환경연구노트 v.9 PAHs의 환경독성과 환경오염 실태-PAHs에 대한 해양오염-인제대학교 부설환경연구소 제9회 심포지움 황인영;박관하;김정상;이종협
  5. Bull. Plankton Soc. Jpn. v.37 Fecal pellet production by two species of planktonic calanoid copepodsfed on naturally occurring particles Ayukai,T.
  6. Mar. Pollut. Bull. v.46 POPs in edible clams from differenet Italian and European markets and possible human health risk Binelli,A.;A.Provini https://doi.org/10.1016/S0025-326X(03)00043-2
  7. Envrion. Int. v.29 Induction of EROD activity in European eel(Angullia anguilla) experimentally exposed to benzo[a]pyrene and β-naphthoflavone Bonacci,S.;I.Corsi,R.Chiea;F.Regoli;S.Focardi https://doi.org/10.1016/S0160-4120(03)00005-9
  8. Environ. Int. v.28 Emission impossible? The challenge of quantifying sources and releases of POPs into the environment, article in press Breivik,K.;R.Alcock https://doi.org/10.1016/S0160-4120(02)00023-5
  9. Method for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms(4th ed.) Acute toxicity test procedures Cornelius,W.
  10. Aquat. Toxicol. v.60 Heat-stock protein(HSP70) response in the eastern oyster, Crassostrea virginica, exposed to PAHs sorbed to suspended artificial clay particles and to suspended field contaminated sediment Cruz-rodriguez,L.A.;F.E.Chu https://doi.org/10.1016/S0166-445X(02)00008-5
  11. Toxicol. in vitro v.11 Alkaline comet assay in rainbow trout hepatocyte Devaux,A.;M.Pesonen;G.Monod https://doi.org/10.1016/S0887-2333(97)00004-0
  12. Mar. Pollut. Bull. v.30 no.2 Domestic waste and TBT pollution in coastal areas of Ambon island Evans,S.M.;M.Dawson;J.Day;C.J.Frid;J.M.Gill;L.A.Patisina;J.Porter https://doi.org/10.1016/0025-326X(94)00182-9
  13. Mar. Environ. Res. v.42 Biochemical and genotoxic biomarker in the Mediterranean crap Carcinus aestuarii experimentally exposed to polychlorobiphenyls, benzopyrene and methly-mercury Fossi,M.C.;L.Lari;S.Casini;N.Mattei;C.Savelli;J.C.Sanchez-Hernandez;S.Castellani;M.Depledge;S.Bamber;C.Walker;D.Savva;O.Sparagano https://doi.org/10.1016/0141-1136(95)00059-3
  14. Mar. Pollut. Bull. v.42 Preliminary results of biomarker responses in zooplankton of brackish environments Fossi,M.C.;R.Minutoli;I.Guglelmo https://doi.org/10.1016/S0025-326X(00)00214-9
  15. Fish Physiology v.6 The effect of environmental factors on the physiology of fish Fry,F.J.
  16. North Sea. Mar. Biol. v.49 Copepod grazing during a declining spring phytoplankton bloom in northern Gamble,J.C. https://doi.org/10.1007/BF00455025
  17. Mutat. Res. v.538 Hematitie $(Fe_2O_3)$ ehhances benzo[a]pyrene genotoxicity in endotracheally treated rat, as determined by comet assay Garry,S.;F.Nesslany;E.Aliouat;J.M.Haguenoer;D.Marzin https://doi.org/10.1016/S1383-5718(03)00082-2
  18. Pharmacol. Toxicol. v.100 Tributyltin induced imposex in stenoglossan gastropods: Pathological effects on the female reproductive system. Comparative Biochemistry & Physiology Part C: Compar. Gibbs,P.E.;P.L.Pascoe;G.W.Bryan
  19. Mar. Environ. Res. v.34 Cytochome P450 in seals: monooxygenase activities, immunochemical cross-reactions and response to phenobarbital treatment Goksoyr,A.;J.Beyer;H.E.Larsen https://doi.org/10.1016/0141-1136(92)90093-2
  20. Mytilus galloprovincialis. Comparative Biochemistry & Physiology Part C v.132 Effect of polycyclic aromatic hydrocarbons on the pallial fluid buffering capacity of the marine mussel Graciela,G.R.;C.M.Gromez-Gotierrez;F.J.Marquez-Rocha
  21. Ecotox. Environ. Safe. v.51 Juvenile sea bass liver P450, EROD induction, and erythrocytic genotoxic responses to PAH and PAH-like compounds Gravato,C.;M.A.Santos https://doi.org/10.1006/eesa.2001.2133
  22. Ecotox. Environ. Safe. v.55 Genotoxicity biomarkers' association with B(a)p biotransformation in Dicentrarchus labrax L. Gravato,C.;M.A.Santos https://doi.org/10.1016/S0147-6513(02)00070-2
  23. Biochem. Biophys. Res.Commun. v.238 Polycyclic aromatic hydrocarbon inhibit the activity of acetylcholinesterasee purified from electric eel. Kang,J.J.;H.W.Fang https://doi.org/10.1006/bbrc.1997.7293
  24. Mar. Ecol. Prog. Ser. v.26 Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration and omposition of specific dynamic action Kiorboe,T.;F.Mohlenberg;K.Hamburger https://doi.org/10.3354/meps026085
  25. Mar. Pollut. Bull. v.44 Toxic contaminants and their biological effects in coastal waters of Xiamen, China. Ⅱ. Biomarkers and embryo malformation rates as indicators of pollution stress in fish Klumpp,D.W.;C.Humphrey;H.Hong;T.Feng https://doi.org/10.1016/S0025-326X(02)00054-1
  26. Mar. Environ. Res. v.54 Different levels of mussel(Mytilus edulis) DNA strand breaks following chronic field and acute laboratory expose to polycyclic aromatic hydrocarbons Large,A.T.;J.P.Shaw;L.D.Peters;A.D.Mcintosh;L.A.Mally;J.K.Chipman https://doi.org/10.1016/S0141-1136(02)00139-3
  27. Mar. Pollut. Bull. v.18 Sublethal effect of bis(tri-n-butyltin)oxide on Crassostrea gigas spat Lawler,I.F.;J.C.Aldrich https://doi.org/10.1016/0025-326X(87)90503-0
  28. Aquat. Toxicol. v.44 Bioaccumulation of sediment-associated fluroanthene in benthic copepods: uptake, elimination and biotransformation Lotufo,G.R. https://doi.org/10.1016/S0166-445X(98)00072-1
  29. Aquat. Toxicol. v.44 Lethal and sublethal toxicity of sediment-associated fluroanthene to benthic copepods: application of the critical-body-residue approach Lotufo,G.R. https://doi.org/10.1016/S0166-445X(98)00071-X
  30. Polycyclic aromatic hydrocarbons in the aquatic environment Neff,J.M.
  31. Mar. Ecol. Prog. Ser. v.221 Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton Nejstgaard,J.C.;L.J.Naustvoll;A.Sazhin https://doi.org/10.3354/meps221059
  32. Mar. Ecol. Prog. Ser. v.47 Rates of egg production by the copepod Calanus marshallae in the laboratory and in the sea off Oregon. USA. Peterson,W.T. https://doi.org/10.3354/meps047229
  33. Ecotox. Environ. Safe. v.53 Effect of temperature on the sensitivity sludge worm Tubifex tubifex muller to selected heavy metals Rathore,R.S.;B.S.Khangarot https://doi.org/10.1006/eesa.2001.2100
  34. Chemosphere v.52 Comparison of biomarker and pathological responses in flounder(Platichthys flesus L.) induced by ingested polycyclic aromatic hydrocarbon(PAH) contamination Reynolds,W.J.;S.W.Feist;G.J.Jones;B.P.Lyons;D.A.Sheahan;G.D.Stentiford https://doi.org/10.1016/S0045-6535(03)00332-1
  35. Chemosphere v.52 Toxicity of fluoranthene and its biodegration metabolites to aquatic organism Sepic,E.;M.Bricelj;H.Leskovsk https://doi.org/10.1016/S0045-6535(03)00321-7
  36. Mar. Environ. Res. v.49 Imposex in the rook shell, Thais clavigera, as evidence of organotin contamination in the marine environment of Korea Shim,W.J.;S.H.Kahng;S.h Hong;N.S.Kim;S.K.Kim;J.H.Shim https://doi.org/10.1016/S0141-1136(99)00084-7
  37. Prog. Oceanogr. v.57 Influence of food quality on egg production and viability of the marine planktonic copepod Acartia omorii Shin,K.;M.C.Jang;P.K.Jang;S.J.Ju;T.K.Lee;M.Chang https://doi.org/10.1016/S0079-6611(03)00101-0
  38. Mar. Pollut. Bull. v.45 TBT toxicity on the marine microalga Nannochloropsis oculata Sidharthan,M.;S.Y.Kim;H.W.Lee;K.S.Park;W.S.Hyun https://doi.org/10.1016/S0025-326X(01)00283-1
  39. Talanta v.58 Monitoring of time variation and effect of some meteorological parameters in polynuclear aromatic hydrocarbons in Ioannia, Greece with the aid of HPLC-flurorescence anlaysis Sikalos,T.I.;E.K.Paleologos;M.I.Karayannis https://doi.org/10.1016/S0039-9140(02)00287-4
  40. Water Res. v.4 Measurement of pollutant toxicity to fish. Ⅱ. Utilizing and applying bioassay results Sprague,J.B. https://doi.org/10.1016/0043-1354(70)90018-7
  41. Frost. Bull. Plankton Soc. Jpn. v.37 The effect of food concentration on the fecal pellet size of the marine copepod Pseudocalanus newmani Tsuda,A.;T.Nemoto
  42. Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment Varanasi,U.
  43. Toxicol. v.145 Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro Vinggard,A.M.;C.Hnida;J.C.Larsen https://doi.org/10.1016/S0300-483X(00)00143-8
  44. Ecotox. Environ. Safe. v.40 The use of biomarkers to measure the interactive effects of chemicals Walker,C.H. https://doi.org/10.1006/eesa.1998.1643
  45. Ecotox. Environ. Safe. v.53 Bioaccumulation and toxicity of fluroanthene in the estuarine oligochaete Monopylephorus rubroniveus Weinstein,J.E.;D.M.Sanger;A.F.Holland
  46. Mar. Chemist. v.79 Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea Witt,G. https://doi.org/10.1016/S0304-4203(02)00035-X
  47. Aquat. Toxicol. v.65 Comparisons of PAH-induced immunomodulation in three bivalve molluscs Wootton,E.C.;E.A.Dyrynda;R.K.Pipe;N.A.Ratcliffe https://doi.org/10.1016/S0166-445X(03)00098-5