Effects of Benzo〔a〕pyrene on Growth and Photosynthesis of Phytoplankton

식물플랑크톤의 성장과 광합성에 대한 benzo〔a〕pyrene의 영향

  • Kim, Sun-Ju (Department of Oceanography, Pukyong National University) ;
  • Shin, Kyung-Soon (Southern Coastal Environment Research Division, South Sea Institute, KORDI) ;
  • Moon, Chang-Ho (Department of Oceanography, Pukyong National University) ;
  • Park, Dong-Won (Southern Coastal Environment Research Division, South Sea Institute, KORDI) ;
  • Chang, Man (Southern Coastal Environment Research Division, South Sea Institute, KORDI)
  • 김선주 (부경대학교 해양학과) ;
  • 신경순 (한국해양연구원 남해연구소 남해특성연구본부) ;
  • 문창호 (부경대학교 해양학과) ;
  • 박동원 (한국해양연구원 남해연구소 남해특성연구본부) ;
  • 장만 (한국해양연구원 남해연구소 남해특성연구본부)
  • Published : 2004.03.01

Abstract

We examined the impacts of anthyopogenic pollutant (benzo〔a〕pyrene) on the growth and photosynthesis of five marine phytoplankton species (Skeletonema costatum, Heterosigma akashiwo, Prorocentrum dentatum, P. minimum, Aknshiwo sanguinea), which are dominant in Korean coastal water. After the 72 h exposure to benzo〔a〕pyrene, the dramatic decrease in cell numbers was observed in the range of 1 to 10 $\mu\textrm{g}$ L$^{-1}$ for S. costatum, P. minimum, P. dentatum, whereas for A. sanguinea and H. akashiwo at the low concentrations 0.1 to 1 $\mu\textrm{g}$ L$^{-1}$ . Among the 5 phytoplankton species, the highest growth inhibition concentration ($IC_{50}$/) was 6.20 $\mu\textrm{g}$ L$^{-1}$ for P. minimum, followed by 2.14 $\mu\textrm{g}$ L$^{-1}$ for P. dentatum, 1.68 $\mu\textrm{g}$ L$^{-1}$ for S. costatum, 0.74 $\mu\textrm{g}$ L$^{-1}$ for H. akashiwo, 0.10 $\mu\textrm{g}$ L$^{-1}$ for A. sanguinea. The five species exposed to the low concentration of 1 $\mu\textrm{g}$ L$^{-1}$ were recovered after transferring to new media, but the species exposed to the high concentrations of 10 and 100 $\mu\textrm{g}$ L$^{-1}$ were not recovered, with the exception of P. minimum. Those results indicate that the thecate dinoflagellate P. minimum is most tolerant to the chemical and the athecate dinoflagellate A. sanguinea is not. Geneyally, the cell-specific photosynthetic capacity of H. akashiwo exposed to the low concentrations of 0.1 and 1 $\mu\textrm{g}$ L$^{-1}$ was higher than that of the cells in the control, whereas the cells exposed to the high concentrations of 5 and 10 $\mu\textrm{g}$ L$^{-1}$ showed the negligible photosynthetic level by the first few days of the experiment. In the case of the cells exposed to the concentration of 5 $\mu\textrm{g}$ L$^{-1}$ , after 12 days of the experiment the photosynthetic capacity was increased toward the end of the experiment. This indicates that H. akashiwo may utilize the benzo〔a〕pyrene as a carton source for its growth when exposed to low concentrations. Results suggest that anthropogenic pollutants such as benzo〔a〕pyrene may have significant influence on the succession of phytoplankton species composition and the primary production in coastal marine environments.

본 연구는 해양 식물플랑크톤에 대한 지속성 유기오염물질의 영향을 이해하기 위한 목적으로, 우리나라 연안역에서 연간 우점적으로 나타나는 식물플랑크톤 주요 5종 즉, 규조류 Skeletonema costatun, 침편모조류 Heterosigma akashiwo, 와편모조류 Prorocentrum dentatum, P. minimum, Akashiwo sanguinea를 이용하여 benzo〔a〕pyrene(PAHs)에 72시간동안 노출시킨 다음 각 종의 성장 및 저해, 회복능력 등을 조사하였고, benzo〔a〕pyrene의 농도 0.1, 1, 5, 10 $\mu\textrm{g}$ L$^{-1}$에 H. akashiwo (Raphidophyceae)를 노출시켜 시간에 따른 광합성률의 변화를 측정하였다. Benzo〔a〕pyrene에 72시간 노출시킨 후 S. costatum, P. minimum, P. dentatum의 세포수는 1∼10 $\mu\textrm{g}$ L$^{-1}$의 농도사이에서 급격한 감소를 보였고, A. sunguinea, H. akashiwo는 0.1∼1 $\mu\textrm{g}$ L$^{-1}$의 낮은 농도범위에서 지수함수적인 감소를 나타냈다. 성장저해 농도 ($IC_{50}$/) 는 A. sanguinea가 0.10 $\mu\textrm{g}$ L$^{-1}$로 가장 낮았고, H. akashiwo (0.74 $\mu\textrm{g}$ L$^{-1}$) S. costatum (1.68 $\mu\textrm{g}$ L$^{-1}$), P. dentatum (2.14 $\mu\textrm{g}$ L$^{-1}$), P. minimum (6.20 $\mu\textrm{g}$ L$^{-1}$)의 순서로 성장저해농도가 높게 나타났다. Benzota〔a〕pyrene 1 $\mu\textrm{g}$ L$^{-1}$ 이하의 농도에 노출되었던 세포들은 5종 모두 시간이 경과함에 따라 회복하는 경향을 나타냈으나 10 $\mu\textrm{g}$ L$^{-1}$이상의 농도에 노출시에는 P. minimun을 제외하고는 회복되지 않았다. 이러한 결과들은 조사된 5종 중에서 유각 와편모류 P. minimum이 benzo〔a〕pyrene에 가장 내성이 강하며, 무각 와편모류 A. sanguinea가 가장 약함을 의미한다. Benzo〔a〕pyrene 0.1, 1, 5, 10 $\mu\textrm{g}$ L$^{-1}$ 농도에 Heterosigma akashiwo를 노출시킨 다음 성장에 따른 단위세포 당 광합성률은 0.1, $\mu\textrm{g}$ L$^{-1}$의 benzo〔a〕pyrene에 노출시킨 세포의 경우 지수성장기에 단위세포 당 탄소동화율(dpm cells$^{-1}$)이 가장 높은 수치를 나타내었고 안정기에 들어가 면서 점차 감소하여 대조군과 유사한 양상을 나타내었으나, 전체적으로 대조군보다 높은 수치를 나타내었다. 반면에 5, 10 $\mu\textrm{g}$ L$^{-1}$의 농도에 노출된 세포는 초기에 매우 낮은 탄소동화율을 보였으며, 5 $\mu\textrm{g}$ L$^{-1}$의 농도에 노출시킨 세포의 경우 12일째부터 단위세포 당 탄소동화율이 매우 크게 증가하였다. 본 연구의 결과들은 연안해역에 benzo〔a〕pyrene과 같은 지속성 유기오염물질이 유입되었을 때 내성여부에 따라 식물플랑크톤 군집내 종 천이와 일차생산력에 크게 영향을 미칠 수 있음을 시사한다.

Keywords

References

  1. Chemosphere v.46 Algal tests with soil suspensions and elutriates: A comparative evaluation for PAH-contaminated soils Baun,A.;K.B.Justesen;N.Nyholm https://doi.org/10.1016/S0045-6535(01)00097-2
  2. Bull. Environ. Contam. Toxicol. v.56 Uptake and elimination of 14C-phenanthrene by the blue mussel Mytilus edulis. L. at different Algal concentrations Bhork,M.;M.Gilek https://doi.org/10.1007/s001289900022
  3. Aquat. Toxicol. v.38 Bioaccumulation kinetics of PCB 31, 49 and 153 in the blue mussel, Mytilus edulis L. as a function of algal food concentration Bhork,M.;M.Gilek https://doi.org/10.1016/S0166-445X(96)00837-5
  4. Environ. Sci. and Technol. v.21 A comparison of water solubility engancements of organic solutes by aquatic humic materials and commercial humic acids Chiou,C.T.;D.E.Kile;T.I.Brinton;R.L.Malcolm;J.A.Leenheer https://doi.org/10.1021/es00165a012
  5. Environ. Toxicol. Chem. v.16 Crypreservation of fluorescent marker-lableled algae (Selenastrum capricornutum) for toxicity testing using flow cytometry Faber,M.J.;L.M.J.Smith;H.J.Boermans;G.R.Sterphenson;D.G.Thompson;K.R.Solomon https://doi.org/10.1897/1551-5028(1997)016<1059:COFMLA>2.3.CO;2
  6. Bull Environ. Contam Toxicol. v.57 Inbitive effect of organotin compounds on the chlorophyll content of the green freshwater alga Scenedesmus quadricauda Fargasova,A. https://doi.org/10.1007/s001289900161
  7. Wat. Res. v.30 Toxicity and bioaccumulation of cadmium in Olisthodiscus luteus (Raphidophyceae) Fernandez-Leborans,G.;A.Novillo https://doi.org/10.1016/0043-1354(95)00084-X
  8. Environ. Toxicol. Chem. v.15 Enhanced accumulation of PCB congeners by Baltic Sea blue mussel, Mytilus edulis, with increased algae enrichment Gilek,M.;M.Bjork;D.Broman;N.Kautsky;C.Naf https://doi.org/10.1897/1551-5028(1996)015<1597:EAOPCB>2.3.CO;2
  9. Gran. Can. J. Microbiol. v.8 Studies of marine planktonic diatoms. Ⅰ. Cyclotella nana Hustedt and Detonula confervacea(Cleve.) Guillard,R.R.L.;J.H.Ryther https://doi.org/10.1139/m62-029
  10. Mar. Pollut. Bull. v.33 Interactions between eutrophication and contaminats. Ⅲ. Mobilization and bioaccumulation of benzo[a]pyrene from marine sediments Gunnarsson,J.S.;M.T.Schaanning;K.Hylland;M.Skold;D.Eriksen;J.A.Berge;J.Skei https://doi.org/10.1016/S0025-326X(97)00024-6
  11. Organic Geochemistry v.30 Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments Hayes,L.A.;K.P.Nevin;D.R.Lovley https://doi.org/10.1016/S0146-6380(99)00077-7
  12. Environ. Toxicol. Chem. v.4 Sorption dynamics of hydrophobic pollutants in sediment suspensions Karickoff,S.W.;K.R.Morris https://doi.org/10.1897/1552-8618(1985)4[469:SDOHPI]2.0.CO;2
  13. Bull. Environ. Contam. Toxicol. v.63 Effects of phenanthrene on primary production of phytoplankton in two New Jersey estuaries Kelly,L.D.;L.R.McGuinness;J.E.Hughes;S.C.Wainright https://doi.org/10.1007/s001289901029
  14. Environ. Pollut. v.54 Uptake of dieldrin, dimethoate and permethin by cyanobacteria, Anabaena sp. and Aulossira fertilissima Kumar,S.;R.Lal;P.Bhatnagar https://doi.org/10.1016/0269-7491(88)90175-3
  15. Handbook of Ecotoxicology v.1 Freshwater primary producers Lewis,M.A.;Calow,P.(Ed.)
  16. Mar. Ecol. Prog. Ser. v.229 Resistance of the marine diatom Thalassiosira sp. to toxicity of phenolic compounds Lovell,C.R.;N.T.Eriksen;A.J.Lewitus;Y.P.Chen https://doi.org/10.3354/meps229011
  17. Environ. Sci. Technol. v.26 Exposure to carcinogenic polycyclic aromatic hydrocarbons in the environment Menzie,C.A.;B.B.Potocki;J.Santodonato https://doi.org/10.1021/es00031a002
  18. Water Res. v.34 Myriophyllum spicatum released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa Nakai,S.;I.Yutaka;M.Hosomi https://doi.org/10.1016/S0043-1354(00)00039-7
  19. Guidance document on aquatic toxicity testing of difficult substances OECD
  20. Environ. pollut. v.110 The role of algae(Isochrysis galbana) enrichment on the bioaccumulation of benzo[a]pyrene and its effects on the blue mussel Mytilus edulis Okay,O.S.;P.Donkin;L.D.Peters;D.R.Livingstone https://doi.org/10.1016/S0269-7491(99)00282-1
  21. Biological oceanographic processes(3rd ed.) Parsons,T.;M.Takahashi;B.Hargrave
  22. War. Pollut. Res. J. Canada. v.28 Algal bioassays for metal toxicity identification Peterson,H.G.;N.Nyholm
  23. Aquat. Toxicol. v.28 Aquatic phyto-toxicity of 23 pesticides applied at expercted environmental concentrations Peterson,H.G.;C.Boutin,P.A.Martin;K.E.Freemark;N.J.Ruecker;M.J.Moody https://doi.org/10.1016/0166-445X(94)90038-8
  24. Bull. environ. Contam. Toxicol. v.18 Shortterm effects of polynuclear aromatic hydrocarbons on sea-surface microlayer phytoneuston Riznyk,R.Z.;J.T.Hardy;W.Pearson;L.Jabs
  25. Environ. Toxicol. Chem. v.17 Reduction of aryl hydrocarbon receptor-mediated activity of polychlorinated biphenyl mixtures due to anaerobic microbial dechlorination Quensen Ⅲ J.F.;M.A.Mousa;S.A.Boyd;J.T.Sanderson;J.T.Froese;K.L.Geisy;J.P.Geisy https://doi.org/10.1897/1551-5028(1998)017<0806:ROAHRM>2.3.CO;2
  26. Proc. Natl. Acad. U.S.A. v.55 Membrane properties of living mammalian cells as studies by enzymatic hydrolysis of fluoregenic esters Rotman,B.;B.W.Papermaster https://doi.org/10.1073/pnas.55.1.134
  27. Estuarine Coastal and Shelf Science v.56 Nitrite-induced enhancement of toxicity of phenanthrene in fish and its implications for coastal waters Shailaja,M.S.;A.Rodrigues https://doi.org/10.1016/S0272-7714(02)00311-6
  28. Organic Substances and Se-diments in Water The role of phytoplankton in the partitioning of hydrophobic organic contaminants in water Swackhamer,D.L.;R.S.Skoglund;R.Baker(ed.)
  29. Ecotoxicol Environ Saf. v.30 The use of plankts for environmental monitoring and assessment Wang,W.;K.Freemark https://doi.org/10.1006/eesa.1995.1033
  30. Mar. Biol. v.50 Responses of Mytilus edulis on exposure to the water-accommodated fraction of North Sea oil Widdows,J.;T.Bakke;B.L.Bayne
  31. Environ. Sci. Technol. v.20 Sorption kinetics of hydrophobic organic compounds to natural sediments and soils Wu,S.C.;P.M.Gshwend https://doi.org/10.1021/es00149a011
  32. The science of The Total Environment. v.15 The partition of Fluoranthene and pyrene between suspended particles and dissolved phase in the Humber Estuary: a study of the controlling factors Zhou,J.L.;T.W.Fileman;S.Evans;P.Donkin;J.W.Readman