DOI QR코드

DOI QR Code

Control of Pierce's Disease through Degradation of Xanthan Gum

  • Lee, Seung-Don (Plant Pathology Div., Department of Crop Protection, National Institute of Agricultural Science and Technology) ;
  • Donald A. Cooksey (Department of Plant Pathology, University of California)
  • Published : 2004.03.01

Abstract

The diseases caused by Xylella fastidiosa are associated with aggregation of the bacteria m xylem vessels, formation of a gummy matrix and subsequent blockage of water uptake. In the closely related pathogen, Xanthomonas campestris, xanthan gum is known to be an important virulence factor, probably contributing to bacterial adhesion, aggregation and plugging of xylem. Xanthan gum, produced by X. campestris, is an extra-cellular polysaccharide consisting of a cellulose backbone ($\bate$-1,4-linked D-glucose) with trisaccharide side chains composed of mannose, glucuronic acid and mannose attached to alternate glucose residues in the backbone. We had constructed a mutant of X. campestris lacking gumI gene that is responsible for adding the terminal mannose for producing modified xanthan gum which is similar to xanthan gum fromX. fastidiosa. The modified xanthan gum degrading endgphytic bacterium Acineto-bacter johnsonii GX123 isolated from the oleander infected with leaf scorch disease.

Keywords

References

  1. Ahlgren, J. A. 1991. Purification and characterization of a pyruvated- mannose-specific xanthan lyase from heat-stable, salttolerant bacteria. Appl. Environ. Microbiol. 57:2523-2528
  2. Becker, A., Katzen, F., Piihler, A. and Ielpi, L. 1998. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl. Microbiol. Biotechnol. 50: 145-152 https://doi.org/10.1007/s002530051269
  3. Bhattacharyya, A., Stilwagen, S., Ivanova, N., Mark, D., Bernal, A., Lykidis, A., Kapatral, V., Anderson, I., Larsen, N., Los, T., Leznik, G., Selkov., E. Jr., Walunas, T. L., Feil, H., Feil, W. S., Purcell, A., Lassez, J.-L., Hawkins, T. L., Haselkorn, R., Overbeek. R., Predki, P. F. and Kyrpides, N. C. 2002. Wholegenome comparative analysis of three phytopathogenic Xylella fastidiosa strains. Proc. Natl. Acad. Sci. USA 99: 12403-12408 https://doi.org/10.1073/pnas.132393999
  4. BIua, M. J., Phillips, P. A .and Redak, R. A. 1999. A new sharpshooter threatens both crops and ornamentals. California Agriculture 53:22-25 https://doi.org/10.3733/ca.v053n02p22
  5. Bradshaw, I. J., Nisbet, B. A., Kerr, M. H. and Sutherland, I. W, 1983. Modified xanthan: its preparation and viscosity. Carbohydr. Polym. 3:23-28 https://doi.org/10.1016/0144-8617(83)90010-3
  6. Cadmus, M. C., Jackson, L. K., Burton, K. A, Plattner, R. D. and Slodki, M. E. 1982. Biodegradation of xanthan gum by Bacillus sp. Appl. Environ. Microbiol. 44:5-11
  7. Cadmus, M. C., Slodki, M. E. and Nicholson, J. J. 1989. Hightemperature, salttolerant xanthanase. J. Ind. Microbiol. 4: 127-133 https://doi.org/10.1007/BF01569797
  8. Casas, J. A, Santos, V. E. and Garcia-Ochoa, F. 2000. Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme Microb. Technol. 26:282-291 https://doi.org/10.1016/S0141-0229(99)00160-X
  9. Da Silva, F. R., Vettore, A. L., Kemper, E. L., Leite, A and Arruda, P. 2001. Fastidian gum: the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity. FEMS Microbiol. Lett. 203: 165-171 https://doi.org/10.1111/j.1574-6968.2001.tb10836.x
  10. Gardla-Ochoa, F.,, Santos, V. E. and Alcon, A. 1995. Xanthan gum production: an unstructured kinetic model. Enzyme Microb. Technol. 17:206-217 https://doi.org/10.1016/0141-0229(94)00009-G
  11. Garcia-Ochoa, F., Santos, V. E. and Fritsch, A.P. 1992. Nutritional study of Xanthomonas campestris in xanthan gum production by factorial design of experiments. Enzyme Microb. Technol. 14:991-996 https://doi.org/10.1016/0141-0229(92)90083-Z
  12. Garcia Ochoa, F., Santos, V. E., and Casas, J. A 1999. Production and isolation of xanthan gum, In Bucke, C. (ed), Methods in biotechnology, Vol. 10. Humana Press Inc., NJ. p. 7-21
  13. Garcia-Ochoa, F., Santos, V. E., Casas, J. A. and Gomez, E. 2000. Xanthan gum: production, recovery and properties. Biotechnol. Adv. 18:549-579 https://doi.org/10.1016/S0734-9750(00)00050-1
  14. Gardner, M. W. and Hewitt, W. B. 1974. Pierce's disease of the grapevine: The Anaheim disease and the California vine disease. Univ. of California Press, Berkley, CA 225pp
  15. Hashimoto, W., Miki, H., Tsuchiya, N., Nankai, H. and Murata, K. 1998. Xanthan lyase of Bacillus sp. Strain GLl liberates pyruvated mannose from xanthan side chains. Appl. Environ. Microbiol. 64:3765-3768
  16. Hashimoto, W., Miki, H., Tsuchiya, N., Nankai, H. and Murata, K. 2001. Polysaccharide lyase: Molecular cloning, sequencing, and overexpression of the xanthan lyase gene of Bacillus sp. Strain GLl. Appl. Environ. Microbiol. 67:713-720 https://doi.org/10.1128/AEM.67.2.713-720.2001
  17. Hassler, R. A. and Doherty, D. H. 1990. Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris. Biotechnol. Prog. 6: 182-187 https://doi.org/10.1021/bp00003a003
  18. Hopkins, D. L. 1989. Xylella fastidiosa: A xylem-limited bacterial pathogen of plants. Ann. Rev. Phytopathol. 27:271-290 https://doi.org/10.1146/annurev.py.27.090189.001415
  19. Hou, C. T., Bamabe, N. and Greaney, K. 1986. Biodegradation of xanthan by salt-tolerant aerobic microorganisms. J. Ind. Microbiol. 1:31-37 https://doi.org/10.1007/BF01569414
  20. Jannson, P. E., Kenne, L. and Lindberg, B. 1975. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr. Res. 45:275-282 https://doi.org/10.1016/S0008-6215(00)85885-1
  21. Katzen, F., Ferrerio, D. U., Oddo, C. G., Ielmini, M. V. Becker, A., P$\ddot{u}$hler, A. and Ielpi, L. 1998. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 180:1607-1617
  22. Keen, N. T., Dumenyo, C. K., Yang, C-H. and Cooksey, D. A. 2000. From rags to riches: insights from the first genomic sequence of a plant pathogenic bacterium. Genome Biology 1:1019.1-1019.4
  23. Lesley, S. M. 1961. Degradation of the polysaccharide of Xanthomonas phaseoli by an extracellular bacterial enzyme. Can. J. Microbiol. 7:815-825 https://doi.org/10.1139/m61-097
  24. Levy, S., Schuyler, S. C., Maglothin, R. K. and Staehelin, L. A. 1996. Dynamic simulations of the molecular conformations of wild type and mutant xanthan polymers suggest that conformational differences may contribute to observed differences in viscosity. Bioploymers 38:251-272 https://doi.org/10.1002/(SICI)1097-0282(199602)38:2<251::AID-BIP10>3.0.CO;2-I
  25. Purcell, A. H. and Hopkins, D. L. 1996. Fastidious xylem-limited bacterial plant pathogens. Ann. Rev. Phytopathol. 34: 131-151 https://doi.org/10.1146/annurev.phyto.34.1.131
  26. Rogovin, S. P., Anderson, R. F. and Cadmus, M. C. 1961. Production of polysaccharide with Xanthomonas campestris. J. Biochem. Microbiol. Technol. Eng. 3:51-63 https://doi.org/10.1002/jbmte.390030107
  27. Ruijssenaars, H. J., Hartmans, S. and Verdoes, J. C. 1999. A pyruvated mannose-specific xanthan lyase involed in xanthan degradation by Paenibacillus alginolyticus XL-I. Appl. Environ. Microbiol. 65:2446-2452
  28. Sandford, P. A., Pittsley, J. E., Knutson, C. A., Watson, P. R., Cadmus, M. C. and Janes, A. 1977. Variation in Xanthomonas campestris NRRL B-1459: characterization of xanthan products of differing pyruvic acid content, In Sandford, P. A. and Laskin, A. (ed), Extracellular microbial polysaccharides. American Chemical Society Symposium Series, no. 45. American Chemical Society, Washington, D.C. p. 192-210
  29. Shatwell, K. P. and Sutherland, I. W. 1990. Influence of acetyl and pyruvate substituents on the solution properties of xanthan polysaccharide. Int. J. BioI. Macromol. 12:71-78 https://doi.org/10.1016/0141-8130(90)90056-G
  30. Shoemaker, D. P., Garland, C. W. and Nibler, J. W. 1989. Experiments in physical chemistry, 5th ed. McGraw-Hill Book Company, NY
  31. Simpson, A. J. G., Reinach, F. C., Arruda, P., Abreu, F. A., Acencio, M., Alvarenga, R., Alves, L. M. C., Araya, J. E. Baia, G. S. Baptista, C. S., et al. 2000. The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406: 151157 https://doi.org/10.1038/35018003
  32. Stankowski, J. D., Mueller, B. E. and Zeller, S. G. 1993. Location of a second O-acetyl group in xanthan gum by the reductivecleavage method. Carbohydr. Res. 241:321-326 https://doi.org/10.1016/0008-6215(93)80123-V
  33. Sutherland, I. W. 1982. An enzyme system hydrolyzing the polysaccharides of Xanthomonas species. J. Appl. Bacteriol. 53:385-393 https://doi.org/10.1111/j.1365-2672.1982.tb01287.x
  34. Sutherland, I. W. 1984. Hydrolysis of unordered xanthan in solution by fungal cellulases. Carbohydr. Res. 131 :93-104 https://doi.org/10.1016/0008-6215(84)85407-5
  35. Sutherland, I. W. 1987. Xanthan lyase novel enzymes found in various bacterial species. J. Gen. Microbiol. 133:3129-3134
  36. Tait, M. I. and Sutherland, I. W. 1989. Sysnthesis and properties of a mutant type of xanthan. J. Appl. Bacteriol. 66:457-460 https://doi.org/10.1111/j.1365-2672.1989.tb05115.x
  37. Von Stettem, F., Francis, K. P. Lechner, S., Neuhaus, K. and Scherer, S. 1998. Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting of 16S rDNA. J. Microbiol. Methods 34:99-106 https://doi.org/10.1016/S0167-7012(98)00077-3
  38. Wells, J. M., Raju, B. C., Huang, H. Y. Weisberg, W. G., Mandelco-Paul, L. and Brenner, D. J. 1987. Xylella fastidiosa gen. Nov., sp. Nov.: Gram negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. J. Syst. Bacteriol. 37:136-143 https://doi.org/10.1099/00207713-37-2-136

Cited by

  1. Pierce's Disease of Grapevines: A Review of Control Strategies and an Outline of an Epidemiological Model vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02141