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A Method to Control Unstable Hopf Bifurcation in Power Systems

Sang-Ho Lee* and Jong-Keun Park**

Abstract - The model of a power system with load dynamics is studied by investigating qualitative
changes in its behavior as the reactive power demand at a load bus is increased. The load is created
using induction motors parallel with the constant power and constant impedance load. As the load
increases, the system experiences various bifurcations such as subcritical and supercritical Hopf,
period-doubling and saddle-node bifurcation. The latter may lead the system to voltage collapse. A
nonlinear controller is used to control the subcritical Hopf bifurcation and hence mitigate voltage
collapse. It is applied to the KEPCO (Korean Electric Power Company) system to demonstrate its

validity.
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1. Introduction

Stability factors experienced by power systems have
become increasingly important since the introduction of the
complex load to the power systems. A power system
generally expresses highly nonlinear dynamic equations
including several system parameters. The response of the
system can be to undergo various bifurcations such as Hopf,
period-doubling, or saddle-node bifurcation, any of which
can lead the power system to voltage collapse. Voltage
collapse is the process by which voltage instability results
in a very low profile situation in a certain portion of the
system and, ultimately induces the general blackout of a
segment or of the totality of the network. The collapse may
be followed by the loss of load or the tripping of lines, or
even worse, complete shutdown of the affected area.

To enhance the unstable situation, many techniques are
presently in use to mitigate voltage collapse. These
techniques include: a) series capacitor banks, b) static var
compensators (SVC), and c) operating uneconomic
generators to change power flows or provide voltage
support during emergencies. Some investigators have
linked voltage collapse to static bifurcations, in particular,
saddle-node bifurcations. Kwanty et al. presented an
analysis of static stability in power systems based on a
model consisting of the classical swing-equation
characterization for generators and a constant admittance
[1]. Abed & Varajya were the first to suggest a possible
role for dynamic bifurcations in voltage collapse
phenomena [2]. Later Abed et al. [3], Dobson & Chiang [4],
Ajjarapu and Lee [5], Venkatasubramanian et al. [6] and
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Nayfeh et al.[7] investigated oscillatory behaviors of power
systems and their implication on voltage collapse.

Over the past decade, there has been an interest in the
interplay between bifurcation and control theories as well
as in applications of bifurcation theory in the design of
controllers for nonlinear systems exhibiting bifurcations.
Abed et al. [3] investigated the mitigation of Hopf
bifurcations and chaos by using bifurcation control. They

proposed controllers of the form y = K@”, where n=1,3,

o is the frequency, and K>0 is the gain [7]. They use the
techniques of perturbation theories [10] and nonlinear
feedback control [9].

In general, the power system model can be represented
by a system of nonlinear algebraic and ordinary differential
equations. The loads can be classified into static loads (e.g.,
constant impedance, constant current or constant power)
and dynamic loads (e.g. induction motors). In all of the
aforementioned studies, the loads have been modeled in
induction motors, capacitors, and constant PQ loads.
According to past experiences, the power transfer
capability of a long transmission line for any type of
compensation scheme is the highest for a constant
impedance load and the lowest for a constant power load
[8]. In the present work, we consider a model in which the
load is represented by an induction motor, a capacitor, and
a combination of constant power and constant impedance
PQ loads. Then, voltage stability is studied by investigating
the bifurcation of static and dynamic solutions.

2. Power System Model

We consider after Dobson & Chiang the power system
shown in Fig.1 [4]. It consists of two generators feeding a
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load, which is represented by an induction motor in
parallel with a capacitor and a PQ load. One generator is
an infinite bus and the other generator has a constant
voltage magnitude E,,.

Y, 4(8,-7/2) Ves Y, 4(-8,-7/2)

E,Z0

E,£0 et [Loas

Fig. 1 Power system model (3 bus system)

The equations that govern the power system model are:
5,=w M

Mo=—-d,o+P,+E,Y, Vsiné -6,
-6,)+E.Y, sin@, 2

K,0=E,Y,Vcos(§+6,)+E,Y,V cos

(6-6,+6,)-[K,, +q,0, +Y,cosb,

+Y, cos0, IV: —(K,, +4,0,)V -

Qo +9,Q) 3)

TK K,V = —,/Kjw +K> [~E, Y, Vcos(d

+6,-n)+E,Y Vcos(6-6,+6, -]l

+IK K,y + K2, + K2, [Y, cos(8, —1)
+Y, cos(8,, —n)]— K, pP+ K .40 v?
+[prva _quva —qup2i)1 +prq2Q1

]V"qu(Po+p1P1)+pr(Qo+Q1Q1) (4)

where 7] =tan™’ (K, +K,,)

We have four state variables, namely, &,,®,V,d

and many control parameters. These equations admit
equilibrium as well as dynamic solutions. Equilibrium
solutions are discussed in Sec. 3, whereas dynamic
solutions are discussed in Sec. 4.

In most aforementioned studies [3, 4], the PQ load has

been represented as a constant power, thatis p,, p;,q,,

and g, are taken to be zero. In this paper, to realize the

influence of constant impedance load and constant power

load, weset g, =g, =1.
O, is used as the control parameter. We use the same
parameter value in [4].
K, =04K, =03K, =-003K =-28,
K,,=21T=85F=060,=13E,=1.0,
C =12.0,Y, =20.0,6, =-5.0,Y,, =5.0,6,, =-5.0,
E, =10,P,=10,d,=005M =03

All values are in per unit except for angles, which are in
degrees.

3. Approximated Equilibrium Solutions And
Their Bifurcations

The equilibrium solutions of (1)~(4) correspond to

8=0 (5) ®»=0 6

5 =0 ) V =0. (8)

It is not easy to estimate the equilibrium solution for
these equations analytically. However, under the

assumption of 6, =0=0 , we can obtain the
approximated solution for V and declare the static limit of
the system easily from (8). Since (8) is quadratic in V
(aV>+bV+c=0), the static limit can be simply
determined by its discriminant D ( b* —4ac ). The
discriminant is plotted in Fig. 2. We also plot the
approximated equilibrium solution of V and the
discriminant D in Fig. 3.
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Fig. 2 Discriminant of approximated equation of (8)

The discriminant has a form similar to the voltage
profile, so we can use this as an index for static voltage
limit. That is, if the value of discriminant reaches zero, it
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signifies that the voltage is approaching the saddle-node
bifurcation point. But under this assumption, no Hopf
bifurcation can be viewed since we ignore the sine
function of angles. It is verified that this assumption is
quite acceptable through the numerical simulation in the
next section.
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Fig. 3 Approximated equilibrium solution and discriminant

4. Dynamic Solutions

A representative bifurcation diagram for the case of a
constant and quadratic PQ load (i.e. a combination of
constant power and constant impedance load) is shown in
Fig. 4. Throughout all simulations, the dynamic
simulation package PSS/E has been used.

There are two Hopf bifurcations HB1 and HB2 at

0, =6.9739 and 7.19403, respectively, and a saddle-node
bifurcation at @, =7.19505.
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Fig. 4 Bifurcation diagram for the uncontrolled system

The limit value and solutions are nearly identical to
those in Fig. 2, so the assumption of &, =6 =0 in

section 3 is reasonable.
The solid and dashed lines are used to depict the loci of

stable and unstable equilibrium states, respectively. HB1
and HB2 represent the subcritical and supercritical Hopf
bifurcation point, respectively. Near the Hopf bifurcation
points HB1 and HB2, (1)~(4) possess small limit cycle
solutions.

Between HB1 and HB2, the stable limit cycles undergo
a sequence of period-doubling bifurcations, culminating in
chaos. The chaotic attractors in turn suffer crises-type
bifurcations, leading to voltage collapse. One example for
the unstable behavior is depicted in Fig. 5.
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Fig. 5 A two-dimensional projection of the phase portrait
onto the V- plane ( Q, =6.98: just after the crisis)
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Fig. 6 Bifurcation diagram for the controlled system

Starting with a value of (), slightly less than that
corresponding to the saddle-node bifurcation value of
0, =7.19505 and slowly decreasing (;, we find that V is
constant and stable. As (), decreases below the supercritical

Hopf bifurcation HB2 at (), =7.19403, a small and stable limit

cycle begins to take shape. As (), decreases further, the limit

cycle grows, deforms, and then endures a sequence of period-
doubling bifurcations, leading to chaos.
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5. Control Of Subcritical Hopf Bifurcaition

To control the subcritical Hopf bifurcation and hence
the chaos and voltage collapse, we added a nonlinear
feedback controller that transforms the Hopf bifurcation
from a subcritical state into a supercritical one. The
nonlinear load dynamics are known as the main cause of
voltage instability. Therefore, the controller in the load
bus has a superior effect on voltage instability. We added
the nonlinear controller to eq. (4) of the form
KV-K,\V’. (K, =0.1,K,=02) The cubic term
plays the role of a stabilizing factor if it has a negative
coefficient. The opposite sign of the linear term is added
to prevent the decrease of voltage caused by a minus term
(cubic term). The linear term is a destabilizing term, so it
must have a relatively insignificant value.

The subcritical Hopf bifurcation HB1 has been
transformed into a supercritical Hopf bifurcation, the
unstable limit cycles have been eliminated, and the
amplitudes of the stable limit cycles born as a result of the
Hopf bifurcation are small. Consequently, voltage
collapse has been delayed to the saddle-node bifurcation
point.

In Fig. 6, stable oscillatory states are denoted by circles
and the saddle-node bifurcation point is denoted by a
square.

A case of stable limit cycle is depicted in Fig. 7. In this
case, any small disturbance will trigger the systems stable
limit cycle.
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Fig.7 A two-dimensional projection of the phase portrait
onto the V-@ plane: the case of stable limit cycle

6. Application To Kepco System

To verify the validity of this controller, we applied it to
the KEPCO system composed of 215 machines and 803
buses. Fig. 8 shows the bifurcation diagram for bus 1445.
The ‘x’s in Fig. 8 represent the unstable oscillatory

solutions. The small square is the saddle-node bifurcation
point.
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Fig. 8 Bifurcation diagram for the uncontrolled KEPCO

system

A time sequence of voltage in some buses (#5645,
#23371) is given in Fig. 9. The magnitude of voltage
increases with time.
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Fig. 9 Voltage profiles around the unstable Hopf bifurcation
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To improve this situation, the nonlinear controller of
KYV-K 3V3 is added to this bus, so that the unstable

oscillatory solutions are transformed into stable ones.
One of its examples is depicted in Fig. 9 and Fig. 10.

Fig. 9 is representative of the uncontrolled system and Fig.

10 is the supercritical Hopf bifurcation trajectory with the
nonlinear controller. The x-axis is the voltage and the y-
axis is the var output of the generator #25151 in both
figures.
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5. Conclusion

We have considered the model power system with two
generators feeding a load represented by an induction
motor in parallel with a capacitor and a PQ load.

Under some degree of assumption, a static stability
index can be derived and an approximated equilibrium
solution can be acquired easily. This has been verified
through numerical simulation.

Dynamic solutions indicate that the system can be
unstable through subcritical Hopf bifurcation, so a
nonlinear controller is added in the load bus to convert
unstable Hopf bifurcation into stable Hopf bifurcation.
This can mitigate voltage collapse until the point of
saddle-node bifurcation.

This scheme has been applied to the KEPCO system, so

that the unstable oscillatory phenomena can be suppressed.
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