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ABSTRACT-In this paper, a modified and representative unit cell model was employed to study the crush behaviour of
a closed cell metallic foam. The unit cell which captures the main geometrical features of the metallic foam considered
was used to simulate crush behaviour in metallic foams. Both analytical using limit analysis and numerical using the finite
element method were used to study the collapse behaviour of the cell. The analytical crushing stress of the foam was
compared with FE results and was found to be in good agreement.
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1. INTRODUCTION

The improvement of the crashworthiness of automobiles
cannot be overestimated. Also, environmental effects of
vehicles are strongly considered nowadays (Mierlo et al.,
2003). This, together with a range of environmental
concerns and social pressures backed by legislation has
led, and will continue to lead, to highly innovative
designs, involving lighter materials such as aluminium or
magnesium alloys, smart structures, metal matrix and
polymer matrix composites (Lee and Cheon, 2001), and
metallic and polymeric foams. The use of these materials,
however, is also governed by their ability to meet the
increasing demands for crashworthiness (Huh and Kang,
2002) with the ultimate goal being the reduction of
occupant harm and vehicle damage.

Of particular interest to this study is the use of
structural foams in automotive components. Foam is
currently being used as a filler material in bumpers and as
reinforcement in roof and door beams. The objective is to
reinforce these weak areas so that they respond
effectively to impact loads. The energy absorbing
capacity of foams is derived from their ability to undergo
large deformation, while maintaining a near constant
stress value.

Foam has been the subject of numerous experimental,
numerical and theoretical investigations. Hanssen ef al.
(1996, 2000) studied foam filled structure analytically
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and experimentally. Baumeister ef al. (1997) emphasized
the integration of foam materials in the automotive body
structure for energy absorption. Hucko and Faria (1997)
used a simple viscoelastic material model to represent the
mechanical behaviour of cellular materials. Sugimura ef
al. (1997) and Grenestedt (1998) assessed the roles of
cell morphology and imperfections in governing the basic
properties of foams, such as stiffness, yield strength and
fracture resistance. Ford and Gibson (1998) developed
microstructural models to examine the mechanisms
responsible for differences in tensile and compressive
strengths observed in cellular materials. Overaker et al.
(1998) introduced a two-dimensional model for under-
standing the elastic behaviour of regular hexagonal foams
as well as honeycomb structures. Santosa and Wierzbicki
(1998, 1998) introduced a three-dimensional unit cell
model and investigated the effect of key geometric
parameters on the mechanical properties of the foam.
Fortes et al. (1999) analyzed the contact of cellular solids
based on a model previously developed by Gibson and
Ashby (1988). Paul et al. (1999) performed experimental
investigation on the tensile strength of notched closed cell
aluminium foams. Harte ez al. (1999) measured the tension-
tension and compression-compression cyclic properties
for aluminium foams. Miller (2000) proposed a yield surface
that can be used to describe the plastic flow behaviour of
metal foams. Deshpande and Fleck (2000) found that the
dynamic behaviour of cellular aluminium alloys is very
similar to their quasi-static behaviour up to a strain rate of
5000 s™'. Batawros ef al. (2000) and Meguid and Xue
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(2000) experimentally investigated deformation mecha-
nisms in a closed cell aluminium foams by digital image
processing. Gutiérrez and Borst (2000) presented the
application of the finite element reliability method to
the evaluation of the statistical properties of localtization
phenomena. Meguid er al. (2002) introduced stochastic
consideration to investigate localised deformation of
cellular structures. The aim of the current work is to
model! the unit cell representing mechanical behaviour
of cellular materials. Santosa and Wierzbicki's unit cell
model (1998) used cruciform and pyramidal section,
while it was deemed that pyramidal section is not good
enough for the representative of cell shape. Therefore,
the modification to Santosa and Wierzbicki's model is
developed in this work using hemispherical as well as X
section, which is believed to be more representative of
the geometrical features of our foam and thermody-
namically stabler, since hemispherical section is more
representative compared with pyramidal section. The
crush behaviour of the modified unit cell was studied
analytically using plastic hinge analysis and compared
with numerical simulation using the commercial FE
code LS-DYNA.

2. MODIFIED UNIT CELL MODEL

Figure 1 shows the topology of closed cell aluminium
foam fabricated by the Norsk Hydro.

Cell shapes are mostly spherical due to high surface
tension prior to solidification. In this study, the pyramidal
part of the cruciform-pyramid unit cell model of Santosa
and Wierzbicki (1998) was replaced by a hemispherical
section. As a result, the modified unit cell is composed of
an X-section, upper and lower wings, a flat bottom and
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Figure 1. Section of Hydro aluminium foam.
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Figure 2. Modified vnit cell model: (a) orthogonal view,
and (b) obligue view.

two hemispherical parts, as depicted in Figures 2(a) and
2(b).

The relative density of the modified unit cell with
respect to the solid cube can be expressed as

s =3+ 5NE) o
Psolid w/)  4\wAw

The different components of the modified unit cell model
absorb energy by membrane and bending deformations.
It was assumed that the X-section and the wings only
experience bending deformation. Furthermore, we
assumed that the hemispherical part absorbs energy both
by membrane and bending. Hereinafter, part A will imply
the X-section, while part B implies the wings together
with the hemispherical sections, as shown in Figure 2(b).

3. CRUSHING STRESS

Cellular materials undergo three steps of deformation
during compressive loading: elastic, plateau and densi-
ficadon. The shock absorbing property of cellular structures
depends on the platean region. In this section, we
evaluate the crushing stress of the modified unit cell
model using plastic hinge analysis. The cell material was
assumed to be elastic-perfectly plastic with a flow stress
0 The equivalent plastic flow stress (o) for a general
material behaviour can be obtained according to Schey
{1987):

— 1 6!-7“
= (—-——-—£P"H 0l 0,dE, (2)

where, o, is the plastic stress, &, is the plastic strain, g, is
the ultimate plastic strain, and £ is the yield strain.

O

3.1. Mean Crushing Stress of Part A
The mean crushing stress of part A, i.e. g, was calculated
based on the solution of Abramowicz (1994):

P
o4 = 4
Abzmum

¢ 153
= 4.24 cp(;) 3
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3.2. Mean Crushing Stress of Part B
The mean crushing stress of the hemispherical part and
the wings was evaluated using the energy equation:

Pyby = ¥ [Mlda+ | NopeopdS @
i=1

where P, and &, imply mean crushing force and
deformation of part B up to the onset of densification. M,
is the bending moment per unit length, /; is the length on
which M, acts, i.e. the horizontal perimeter of the
hemispherical part at an arbitrary polar angle and « is the
rotated angle of the structure due to bending. The left
hand side represents energy due to the external load and
the right hand side contains the internal energy resulting
from bending and membrane deformations. S is the
surface experiencing membrane deformation.

In this hinge analysis, we assumed that the hemispheri-
cal part deforms plastically to form a circular disc upon
densification, as shown in Figure 3. We can, therefore,
calculate the height of the hemisphere at the onset of
densification by assuming that negligible strain occurs in
the polar direction (g,) of the hemisphere prior to
densification; viz.

.= (Z—f -3 )p ®)

This implies that the onset of densification is dictated by
membrane deformation not bending. Accordingly, the
strain at the onset of densification can be determined as:

_ 1_2(71_1)2 = 1-062 ©)

3.2.1. Energy due to bending in hemisphere
The bending deformation of the hemispherical part was
divided into two stages. The first is a flattening stage,
while the second involved the development of a hinge as
shown in Figure 4.

Assuming that E, and E, denote the energy of the first
and second stages, we can obtain

/2 T /2 .
E = jo M1d¢=j0 M(nDsing)d¢
= (02570, D= 0.80,Dr (7a)
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Figure 3. Membrance deformation of hemisphere.

E
Figure 4. Bending deformation of hemisphere.
E, = A—mv’g = (0.250,#)(nDsin1 )g
7-[2
= §(sin o:Dr*= o:Dt? (7b)

where M, is the bending moment per unit length
corresponding to the flow stress, and /. is the critical
horizontal perimeter in the hemispherical part as shown
in Figure 3. Their values are shown below

My = 0250, (8a)
I, = aDsinl = 2.6D (8b)

Thus, the total energy due to bending in the hemisphere is

E., = E + E, = 1.80:Dr )

3.2.2. Energy due to membrane in hemisphere

The energy due to membrane deformation of the
hemisphere E,, based on the deformation mode shown in
Figure 3, can be expressed in spherical coordinates, as
follows:

[ NegtapdS = | (N,,&,+ Nogkoo + NosEoo + Nootiso

+ Noy€ap + N yEp)dS (10)

where 6 is the azimuthal angle and ¢ is the polar angle.
The above expression involves only one dominant
membrane strain term (£y). Since there is no deformation
in the polar direction, €,, £, and &, can be set to zero.
Furthermore, the shear strains are negligible in membrane
deformation, hence &, is also set to zero. The through-
thickness strain &, is not significant, and it is related to &,
through Poisson's ratio. However, the radial stress resultant
N, is negligible for thin structures. Based on these
assumptions, Equation (10) becomes

jSNaﬁeapds = jSN%eggds (n

where Ny, and &, are given by
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Nge = Ot (1221)

£ _ 1 aug +
%~ rsing 00
For membrane deformation, the angular displacement u,
is equal to zero. In addition, the radial displacement u, is

accounted for in bending deformation. Accordingly,
Equation (12b) can be expressed as

oL,
"~ rsing 00

Applying Equations (12a) and (13) to Equation (11), we
obtain

j( Or )(rsln(baau;)

= oyt J;l—(pdqb (14)

where the maximum value of u,, i.e. u,,,, can be derived
as follows:

+ —?cosqb (12b)

13)

= ourf[— qug’ 6do

Upax = }t(nD—ersinl) = 0.1D (15)
The polar displacement u, can be obtained as a function
of ¢ and ¢ (=m/2-¢), as well as u,,, from the following
geometric relations as shown in Figure 3.

Up = Unp® = 0.1D¢ 091 (16a)
Uy = Upm—D— = 02D (0< o< g— ) (16b)
i1
G-1)
Substituting Equation (16) into Equation (14), we obtain
D¢ u,
) d
or sing ¢
- O'FtE[O 1pf, 2 d¢+020f _‘&dgoJ (17)

The solution of this integration can be obtained using the
following series expansion:

xdx
smOtx
_ 1 (ox)* . (2"-2)B(ax)*'
‘az[a“ 8 Y T ane }

(18)
where B, is Bernoulli number (Spiegel, 1968) defined as

2n)! &1

B, = —
2n-1 .42 =2
20 bV i

19)

The first three terms of the series solution of Equation

(18) were considered sufficient resulting in a maximum
error of 0.03% compared with numerical integration
results using the trapezoidal rule. The total membrane
energy absorbed by the hemispherical part is four times
the contribution of Equation (17), i.e.,

Enn 4[@:’5){(0.11))(1) + (0.21))(0.6)}]

0.56,.D% (20)

3.2.3. Energy due to bending in wing

The energy due to bending in the wing sections can be
obtained as follows. Let / denote the hinged length that
undergoes folding, and « the rotating angle of the hinged
section, with the help of Figure 4, then

E,, = 4]‘—/[leiai
Mel[LapOup + 2lepOep + LppOpr + Lice Qack]

w D\m mDrm
4M{ +2(2—5sm1)2 (§_§)2+TZ]

(3.1w — 0.9D) 5,2 @1

3.2.4. Crushing stress
The total displacement of part B, &, (Figure 3) can be
expressed as

5, = %-hd = 02D 22)

Applying Equations (9), (20), (21) and (22) to Equation
(4), and isolating P; results in

i
Py = 555l (31w-0.9D)0;r* + 1.80,D¢* +0.50,D%]
= oF( 14.6;—§r2 +4.47 + 2.4Dt) (23)

The mean crushing stress of part B can therefore be
expressed as:

= 14.60,(11))(5) + 4.40{&)2 + 2.40{8)(&) 24)

3.3. Total Crushing Stress
The total displacement of part A, d, can be expressed as

0, =w—~2h, = w—0.6D (25)

The total crushing stress of the modified unit cell model
can be obtained by taking the average crushing stress of
each part with respect to vertical deformation, such
that:
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_ 2.6, 0,8, + 2058,
251 0.+ 26;

_ Gu(w—0.6D) +20,(0.2D)

= T (w_06D)+2(0.2D)

_ o,(w-0.6D)+0.40,;D
- w-02D

Or

(26)

where 0, and 0;, the crushing stresses of parts A and B
were given in Equations. (3) and (24), respectively. The
effect of density on the total crushing stress is compared
with numerical results in the next session (Santosa and
Wierzbicki, 1998).

4. NUMERICAL CHARACTERISATION

The crushing results of modified unit cell models were
compared with finite element simulations using LS-
DYNA. Four-noded shell elements were used for the unit
cell and three-noded shell elements were introduced for
connecting between the wing and hemisphere sections. A
total of 2200 shell elements were used for the unit cell.
The Belytschko-Tsay shell element with reduced integra-
tion, hourglass control and self contact were considered.
A piecewise linear plastic material model was used for
the unit cell material with AA6063-T7 material properties.
Tables 1 and 2 show the material properties that were
used for the modified unit cell model and the loading
platen. Automatic surface-to-surface contact was invoked

Table 1. Material properties used in FE analyses.

Cell Rigid platen
Density 2770 kg/m? 7800 kg/m*
Elastic modulus 69 GPa 200 GPa
Yield stress 87 MPa Not necessary

Poissons ratio 03 0.33

Table 2. Plastic stress-plastic strain relations used for
Aluminium foam cell (Santosa and Wierzbicki, 1998).

Plastic strain (%) Plastic stress (MPa)

0 87
0.03 96
0.2 100
0.6 110
15 130
25 140
7 170
15 171

(@) (b) (© (d

Figure 5. Deformation of the modified unit cell model at
different strain levels: (a) 0.1%, (b) 25%, (c) 50%, and (d)
70%.
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Figure 6. Stress-strain curve for 6.5% relative density
foam based on modified unit cell model.

between the model and the platens. Transverse shear
effects were automatically considered. The unit cell
model was compressed at a speed of 200 mm/sec. In the
present study, a diameter to width ratio of 0.5 was selected.
According to Equation (6), this yields a 70% densifi-
cation strain, which is in agreement with preliminary
compressive test results of aluminium foams. Finite

20
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Figure 7. Variation of crushing stress with relative foam
density.
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element analyses were performed for different relative
density ratios by changing the cell wall thickness to width
ratio. Figure 5 depicts the deformation of the modified
unit cell model and Figure 6 shows the nominal stress-
nominal strain curves for a relative foam density of 6.5%.
The conspicuous cusp, occurring at 41% strain, can be
attributed to the snap-through buckling of the hemispherical
part.

The numerically predicted densification strain is in
agreement with the analytical result of Equation (6). The
plastic flow stress (ox) of the material for the plastic
hinge analysis was assumed to be 160 MPa according to
Equation (2).

Figure 7 shows a comparison between the analytical
crushing stress of Equation (26) and that of Santosa and
Wierzbickis pyramid-cruciform (1998) with the finite
element predictions for different relative foam densities.
The finite element results are in good agreement with
Equation (26), while Santosa and Wierzbicki's model
underestimates the crushing stresses.

5. CONCLUSIONS

A modified unit cell model was developed using
hemispherical as well as X-section, which is believed to
be more representative of the geometrical features of
aluminium foam and thermodynamically stabler, and
employed in the analysis of the crushing behaviour of
metallic foams with plastic hinge analyses. The verification
of the modified unit cell model was carried out using FE
analyses. In this respect, a plastic hinge analysis of the
collapse behaviour of the unit cell was compared with
finite element predictions and the results were found to
be in good agreement. Moreover, the modified unit cell
model showed better results than Santosa and Wierzbicki's
model.
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