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ABSTRACT-This paper suggests two simple two-degree-of-freedom models to describe the dynamical interaction
between the pad and the disc of a disc brake system. Separate models for in-plane and out-of-plane vibration are described.
Although a brake pad and disc have many modes of vibration, the interaction between a single mode of each component
is considered as this is thought to be crucial for brake noise. For both models, the pad and the disc are connected by a
sliding friction interface having a velocity dependent friction coefficient. In this paper, it is shown that this friction model
acts as negative damping in the system that describes the in-plane vibration, and as negative stiffness in system that
describes the out-of-plane vibration. Stability analysis is performed to investigate the conditions under which the systems
become unstable. The results of the stability analysis show that the damping is the most important parameter for in-plane
vibration, whereas the stiffness is the most important parameter for the out-of-plane vibration.
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1. INTRODUCTION

Dynamic models that have a friction interface to describe
the mechanisms of disc brake squeal noise have been
studied extensively over the last few decades. Much research
uses either a lumped parameter approach (Brooks ef al.,
1993; Crolla and Lang, 1990; Earles and Chambers, 1987,
1988; Jarvis and Mills, 1963-64; Lang and Smales, 1983;
North, 1976) or the finite element method (Ghesqueiere,
1992; Lang et al., 1993; Lee er al., 1999; Liies, 1989;
Murakami et al., 1984). Matsui et al. (1992) has combined
these two methods, and other methods have also been
introduced such as the holographic image method (Fieldhouse
and Newcomb, 1993) and an experimental method (Nosseir
et al., 1998). The method described in this paper uses the
lumped parameter approach.

Simple models to separately describe in-plane and out-
of-plane vibration are suggested, and then stability analysis
is performed by finding the real parts of the eigenvalues
of the characteristic equation. If these are negative then
the system is stable, but if they are positive then the
system is unstable.

Considering the nature of the friction between the pad
and the disc, the friction force is distributed over the
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contact area in a complicated manner according to the
dynamic modes of pad and disc. Ideally the distributed
friction force may be found by measuring the pressure
applied to the pad and the mode shapes of pad and disc in
operation. However it is very difficult to measure the
individual modes when the disc is rotating.

Alternatively, each mode of the pad and disc can be
found by modal testing (or FEM) in a free condition.
Recently a finite element model incorporating the distributed
friction force has also been introduced (Lee et al., 1999).
Research works that use many modes and more realistic
friction mechanisms have greatly been increased in number.

However, the aim of the mathematical model, in this
paper, is a description of the basic dynamics of the
friction interface and the corresponding stability analysis.
Although a many degrees of freedom model may be
considered, the results may be very complicated to interpret.
Thus it is very important to study a simple model but not
over-simplified, such as proposed two-degree-of-freedom
models in this paper. This may facilitate greater understanding
of the effect of the friction interface on brake squeal
noise.

A simple one-degree-of-freedom system has been
described by Matsui ez al. (1992) and Crolla and Lang
(1990). However, this system is over-simplified and does
not adequately represent the practical physical phenomena.
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As with many other research works, it is mainly
concerned with the dynamical behavior of the pad only.
Shin et al. (2002) extended the simple model to a two-
degree-of-freedom model, which emulates a single mode
interaction between the pad and the disc. However, the
model describes the in-plane dynamic behavior only. The
out-of-plane motion is very important since it is directly
related to the radiated squeal noise. Thus, in this paper,
a two-degree-of-freedom out-of-plane model is also
considered, which describes the relationship between the
in-plane and the out-of plane vibrations of a disc brake
system.

By comparing the in-plane model and the out-of-plane
model, it is shown that the friction mechanism acts as a
negative damping in the model for in-plane vibration, and
acts as a negative stiffness in the model for out-of-plane
vibration. Stability analysis is then carried out for both
models to find the conditions for instability. The results
show whch parameters are important to control both in-
plnae and out-of-plane vibrations.

2. TWO-DEGREE-OF-FREEDOM IN-PLANE
VIBRATION MODEL

In this section the model for in-plane vibration is
described. It is generally known that one of many causes
of the brake noise results from ‘stick-slip’ nonlinear
vibration (Popp and Stelter, {990). The stick-slip motion
is usually described as a limit cycle in phase space, and
requires a complex analysis to understand its non-linear
dynamics. However, linear stability analysis can be used
by assuming that the existence of limit cycle is related to
the squeal noise, because the exisience and non-existence
of a limit cycle depends on the stability of an equilibrium
point inside the limit cycle. Based on this assumption, the
stability analysis of a two-degree-of-freedom in-plane
model is described.

Suppose that the pad and the disc have their own
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Figure 1. Two-degree-of-freedom in-plane model, where
v disc speed, N: braking force, Fy friction force, v,
relative velocity (v, = vy + X, — X ).
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Figure 2. Velocity dependent friction coefficient.

vibrating modes connected through a friction interface
which is the source of an external forcing term. If only
one mode interaction of a pad-disc pair is considered, the
two-degree-of-freedom in-plane model may be described
as in Figure 1.

As shown in Figure 1, the contact surface is the source
of the external friction force that is dependent on the
dynamic friction coefficient. The normal force (braking
force) acting on the pad is constant. The coefficient of
friction is a function of the relative velocity as shown in
Figure 2. This shows that u(v,) has a negative gradient for
the relative velocities, and is linear. The dynamics of this
system may vary according to the friction model chosen,
and there are many models for the friction coefficient to
represent a realistic dynamic friction force. However, in
this paper, a simple linear friction model is selected, as it
has been found to be sufficient for understanding the
effect of the friction mechanism on the system.

Provided that the relative velocity is always positive,
the friction force can be written as

Fr= N — av,) = Nt — ave) + No(x, — %) )
Thus, the equations of motion are given by

mx, + ok, + kx, = N, — ovy) + Nodx, — &)
MoX g+ Ok g+ koxy = — NI, ~ o) + Nolx = x,) (2)

Rearranging these equations gives

mx, + cx, - No(x, - %) + kx, = N(u, — ovy)
Maky + CX g — Nok, — %) + koxy = — N(U, — o) (3)

Based on Equation (3), the system may be redrawn as
shown in Figure 3, where the frictional forcing term is
split into two parts: one is associated with a state variable

Fou = N(,us*a\’b) —Feu= *N(‘US—”(ZV())

Cy {—“} N ’__.» Cy
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Figure 3. Modified two-degree-of-freedom in-plane model.
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(damping in this case), and the other can be considered as
an independent external force directly related to the
dynamic friction coefficient. This independent explicit
forcing term is denoted as ‘F,,’ in Figure 3.

The ‘No/ term is the most important parameter to be
considered. It has the effect of ‘negative damping’ which
supplies energy to the system. For stability analysis, the

characteristic equation becomes.

2
det A+ A+ky, cpl -0 )
Czll 242+C22/1+k22
where
¢ -Na c—Na No Na
= ————,Cn =T —,Ch = ——,Cy = —,
m m; my m,
ky, = 'k*], ky = ﬁ
m, m,
Equation (4) has the following form.
AMral+al’+al+a,=0 (5)

Thus, an array can be formed from which the stability
requirement can be obtained as below.

1 a, a,
a, as 0
a4, —a;
e a; 0 (6)
a;
2 2
a,a,a, — a,a, — a; 00
a,a, —as
where

a; = ¢y + Cp, Gy = CiCp — Culan + Ky + kn,
ay = kycp + kycyy, as = kyky

Thus, the system becomes unstable when the following
conditions are met.

a, <0,ora,<0ora<0,ora, <0 or
aa, —a; <0 or @)
aaa, — ata, — a: < 0

This means that the brake assembly would become
unstable and hence noise occurs.

Squeal noise occurs in a high frequency range usually
between 2 kHz to 10 kHz, and generally results from the
coupling between the pad and the disc vibrations. A
‘damping shim’ is often attached to the brake pad to
provide some damping to the system. However, it is often
reported that squeal noise occurs even with a high degree
of damping treatment on the pad. It is now shown that the
damping of disc is as much important as that of pad, and
this may explain that the damping shim is not always a
solution to squeal noise.
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Figure 4. Stability area of the ‘No/c,” versus normalized
stiffness ‘k,/k,’: (a) m, = m,, ¢, = ¢;; (b) my, =m,, ¢, = 3c,.
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Figure 5. Stability area of the ‘Nodc,” versus normalized
mass my/m,: @) k, =k, ¢, =c; (b) k, =k, ¢; = 3¢,.

Stability analysis is conducted for various conditions
with special emphasis on the ‘Ne¢¢ term. It is normalized
with respect to ‘c,” (i.e., No/c,) for convenience. The way
in which the stability is affected by the normalized ‘No/
term and other normalized system parameters (m,/m,, k,/
k, and ¢,/c;). Figure 4 shows the relationship between the
‘No’ term and stiffness terms (k, and &,). It can be seen
that the system is more stable as the difference between
two stiffness terms becomes larger and as the damping
increases.

The ‘Nod term is also compared with the mass terms
(m, and m,), in Figure 5. Similar to the results in Figure 4,
it is shown that the system is less stable when the natural
frequencies of the pad and the disc are the same. Thus, it
is desirable to avoid any coincidences between the pad
modes and the disc modes. From the results shown in
Figures 4 and 5, it can be seen that for a stable condition
the normalized ‘N¢’ term should never be greater than c,
or c,. Thus, a stability criterion can be obtained for the
case when the difference between two natural frequencies
is large. That is, the system is stable if the value of ‘N
term is smaller than both damping parameters (¢, and ¢,)
of the pad and the disc.

Finally, the normalized ‘N¢’ term is compared with
the normalized damping parameter of the disc (i.e., c/c))
for various combinations of the system parameters (mass
and stiffness terms). The results are shown in Figure 6.
This further verifies the previous results shown in Figures
4 and 5, which shows that the system is more likely to
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Figure 6. Stability area of the ‘Na/c,” versus normalized
damping ‘c)/c;’: (@) my=m, k, =k;; (bymy=13m,, k, =
ki; (c) my =my, ky = 1.3k;; (d) my = Smy, ky = ky; (&) mp =
m,, ky = 5k,.

become unstable when natural frequencies of the disc and
the pad are in close proximity. It also shows that the
system becomes more stable as the damping is increased.

From careful examination of the figures, it can be seen
that the stability area never exceeds the value of ‘1’ in the
vertical axis (corresponding to the normalized ‘N’ term),
and the normalized damping ‘c,/c,” is never smaller than
twice the normalized ‘N¢/ term while maintaining its
stability (see Figure 6(a) in the horizontal axis of ‘1’ and
the vertical axis of ‘0.5’). Also comparing the same
points in Figures 4(a) and 5(a), a criterion can be derived
to guarantee the system stability. The system is
guaranteed to be always stable if “2N¢r is smaller than
both damping parameters (¢, and c,). This also implies
that the system may become unstable if any one of the
damping parameters is smaller than “2N¢.

The significance of the ‘N¢ term may be explained by
the fact that it acts as negative damping, which constantly
supplies energy to the system. That is, if the energy
dissipated by the system damping (¢, and c¢,) is smaller
than the energy supplied by the friction interface (the
‘Nod term), the system becomes unstable.

The results of the stability analysis are summarized

below:

(1) The system becomes more prone to instability when
the natural frequencies of two modes (pad and disc)
are close, i.e., it has the smallest stability area.

(2) Increasing damping results in a larger stability area.

(3) For the system to be stable, two criteria can be stated
when the two natural frequencies are very different,

min(c,, ¢;,) > Na (8)
when the two natural frequencies are close,
min(c,, ¢,) > 2Na 9

where ‘min(, )" denotes the minimum value. Note that
twice the damping is required when the two natural
frequencies are same to meet the criterion. These criteria
imply that no matter how much damping is added to the
pad, the system can become unstable unless an
appropriate amount of damping is added to the disc.

3. TWO DEGREE OF FREEDOM OUT-OF-
PLANE VIBRATION MODEL

In the previous section, the instability resulting from the
in-plane motion of the pad-disc pair has been considered,
where the dynamic friction coefficient was a function of
relative velocity and the normal force was a constant.
If the normal force varies with the vertical relative
displacement, i.e., N(¥), and the friction coefficient varies
with the normal force, i.e., t(v,, N), then a two-degree-of-
freedom out-of-plane model as shown in Figure 7 can be
considered, where the contact stiffness k, is introduced.

Since the friction force acting along the horizontal axis
does not influence on the vertical vibration, the equations
of motion can be written as

MI{y} + [CH{y} +[K+ KWy} =0 10

CILTI k|

M t {’ao; N()
m
ka % —F}» r:l—l_____];f
Wd t Disc
(my)

A1,

Figure 7. Two-degree-of-freedom out-of-plane model.
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where, [M], [C], [K] and [K.] are the mass, damping,
stiffness and contact stiffness matrices respectively, and
{y} is the vertical displacement vector. In this case, the
normal force can be written as

Thus, the friction force becomes
Fr=~ v, Ny k.- (v, — y2) (12)

Although the friction force acts along the horizontal axis,
it depends on the vertical relative displacement. As a
result, the effect of friction force is to influence the
contact stiffness. The linearized contact stiffness matrix
can be found by (Nack, 1999).

oF; JF;
(K] =|% 9% (13)
O, OF,
aYd a)’d
where,
oF au
il Rl AN _ _
ayp aypkc (yp yd) .lecs
JF, _ _du
= 28k - (,-ya) - Hk,
ayd ayd (y yd) :u
and

B4 _ 3uaN _du, du _ dwaN _ o
dy, ONdy, ON " dy, ONdy, ON°

Thus, the contact stiffness matrix can be written as

(K] = —u(v, N)["f "‘f}
k. k.

g—]ﬂka(yp 30 —gj%kc(y,, v

—k. (14)

0 d
Srk: 0y =ya) 5Kk, =y

If the friction coefficient is a function of relative velocity
only, i.e., (v,) as in the previous section, then the contact
stiffness matrix becomes

(K.] = —u(v,)["c "‘f} (15)

c [

Since the friction coefficient is always positive, u(v,) > 0,
the stiffness elements in the contact stiffness matrix [K,]
all act as a ‘negative stiffness’. In this case, the equations
of motion can be written as

mlyp + Clyp + (kl - ﬂ(vr)kc)yp + ,u(vr)kc d = O
M3 a + Y+ (b — pIk)y, + u(v)ky, =0 (16)

C1 Co
“‘,ukc I
my = \N\NN— My
AN
kl (—b L» k2

Mo Yd

Figure 8. Modified two-degree-of-freedom out-of-plane
model.

Similar to the in-plane model, the out-of-plane model
can be depicted as in Figure 8. This shows the ‘uk,” term,
which is the most important parameter acts as a ‘negative
stiffness’.

Equation (6) may be used for the stability analysis,
where the new variables are:

c c k. — k. ky ~ Uk,
tn = _l, Cyp = _27 ky = 1_.[1_’ ky = Z—H_,
nt,y m, m m,
k, k.
k12='l_l"',k21 ___,U
1 my
and

) = ¢y + Cyp, Gy = €l + ki + ky,
ay = kyjcp + kycyi, ay = kyjky — kiokay.

Stability analysis is performed for various conditions
paying particular attention to the term ‘uk,’. The results
are shown in Figure 9, where the ‘uk,’ term is normalized
by ‘k,’ (i.e., uk/k,) for convenience. Then, the normalized
‘uk. term versus other normalized system parameters
(my/m,, ktk, and c,/c,) are examined respectively.

First, the normalized ‘pk. term is compared with the
mass terms and damping parameters as shown in Figures
9(a)~(d). Unlike in the case of in-plane vibration, it is
found that the stability of the system does not depend on
the damping parameters or the masses. Consequently, the
natural frequencies of the pad and the disc are not
important, but only the magnitude of stiffness parameter
influences on the stability of the system.

Next, the normalized ‘pk,” term is compared with the
stiffness terms. The result is shown in Figure 9(e). This
shows that the system is more stable as the stiffness of the
system increases. It also shows that the stable area never
exceeds the value of ‘1’ in the vertical axis (corresponding
to the normalized ‘uk.’ term), and the normalized stiffness
‘k/k,’ is never smaller than twice the normalized ‘uk.’
term while maintaining its stability (see Figure 9(e) in the
horizontal axis of ‘1’ and the vertical axis of ‘0.5”). That
is, it is guaranteed that the system is always stable if 2uk,
is smaller than both stiffness parameters (k, and k,) of the
pad and the disc. Thus, the criterion for the system to be
stable is

min(k,, k) > 2uk, a7
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Figure 9. Stability area of the ‘uk/k,” versus normalized
system parameters: (2) uk/k, versus my/m,, where ¢, = ¢,
k, = ky; (b) ukJk, versus m,/m,, where ¢, = ¢, k, = 5k;; ()
HkJk, versus c./c,, where m, = m,, k, = k,; (d) pk./k, versus
cilc,, where m, = m,, k, = 5k;; (e) ukJtk, versus kyk,,
where m, =m,, ¢, = ¢, or my # my, ¢, # C,.

This implies that both stiffness parameters of the pad
and the disc are equally important, and they must be large
enough to suppress the effect of the negative stiffness due
to the friction interface.

4. CONCLUSION

Two simple two-degree-of-freedom models have been
proposed to investigate the basic instability mechanisms
of a disc brake for both in-plane and out-of-plane
vibrations that may lead to squeal noise. The models
describe the interacting dynamics between the pad and
the disc through the friction interface between the pad
and the disc.

From the stability analyses, following results have
been established: First, for in-plane vibrations, the system
is more prone to instability when the natural frequencies
of pad and disc are close. It has also been shown that the
damping of the system is the most important factor to be
considered for reducing the in-plane vibrations, and that
the damping of the pad and the disc are equally important.

Second, for the instability of the out-of-plane vibrations,

the stiffness of both the pad and disc is important. They
must be sufficiently large to suppress the effect of the
negative stiffness due to the friction interface.

Finally, although the results of the stability analyses
may not be considered comprehensive enough to understand
details of the dynamics, they give important design criteria
and facilitate some insight into the origins of brake squeal
noise.
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