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THREE STEP ITERATIVE ALGORITHMS FOR
GENERALIZED QUASIVARIJATIONAL INCLUSIONS

JONG YEOUL PARK AND JAE UG JEONG

ABSTRACT. In this paper, we suggest and analyze some new classes
of three step iterative algorithms for solving generalized quasivari-
ational inclusions by using the properties of proximal maps. Our
results include the Ishikawa, Mann iterations for solving variational
inclusions(inequalities) as special cases. The results obtained in
this paper represent an improvement and significant refinement of
previously known results [3, 5-8, 10, 14-18].

1. Introduction

In recent years, variational inequality theory has emerged one of the
main branch of mathematical and engineering sciences. This theory
provides us with a simple, natural, unified, and general framework to
study a wide class of unrelated problems arising in fluid flow through
porous media, elasticity, transportation, economics, optimization, re-
gional, physical, structural, and applied sciences, etc.. The ideas and
techniques of variational inequalities are being used to interpret the ba-
sic principles of pure and applied sciences in the form of simplicity and
elegance. Variational inequalities have been extended and generalized
in different directions using novel and innovative techniques both for its
own sake and for its applications. A useful and an important general-
ization of variational inequalities is a mixed variational inequality con-
taining the nonlinear term. Due to the presence of the nonlinear term,
the projection method and its variant forms including the Wiener-Hopf
equations technique cannot be used to study the existence of a solu-
tion of the mixed variational inequalities. These facts motivated us to

Received April 25, 2002.

2000 Mathematics Subject Classification: 49J40, 47J20.

Key words and phrases: variational inclusions, resolvent equations, algorithms,
iterative methods.



2 Jong Yeoul Park and Jae Ug Jeong

develop another technique. This technique is related to the resolvent
of the maximal monotone operator. Using the concept of the resolvent
operator technique, Noor [9, 10] introduced and studied a new system
of equations which is called the resolvent equations. Noor [9, 10] has
established the equivalence between the mixed variational inequalities
and the resolvent equations.

In recent years, considerable interest has been shown in developing
various extensions and generalizations of variational inequalities related
to multivalued operators, nonconvex optimization, nonmonotone opera-
tors, and structural analysis. And three step forward backward splitting
methods have been developed by Glowinski and Le Tallee [4] and Noor
[11, 12] for solving various classes of variational inequalities by using the
Lagrangian multiplier, updating the solution and the auxiliary principle
techniques. It has been shown in [13] that the three step schemes give
better numerical results than the two step and one step approximation
iterations.

In this paper, we suggest and analyze some new classes of three step
iterative algorithms for solving generalized quasivariational inclusions by
using the properties of proximal maps. Our results include the Ishikawa,
Mann iterations for solving variational inclusions(inequalities) as special
cases. The results obtained in this paper represent an improvement and
a significant refinement of previously known results [3, 5-8, 10, 14-18].

2. Preliminaries

Let H be a real Hilbert space endowed with a norm || - || and inner
product (-,-). Let C(H) be a family of nonempty compact subset of H.
Let U,V : H — C(H) be the multivalued operators and f,g,m : H — H
be the single valued operators. Suppose that M : H x H — 2% such
that fixed y € H, M(-,y) : H — 2¥ is a maximal monotone mapping
and Range(g — m) N dom(M(-,y)) # ¢ for each y € H. For a given
nonlinear operator N(-,-) : H x H — H, we consider the problem of
finding = € H, u € U(z), and v € V{(x) such that

(2.1) 0€ N(u,v) — f(z) + M((g — m)(2), z),

where g — m is defined as (g — m)(z) = g(z) — m(z) for each x € H.
The problem (2.1) is called a generalized quasivariational inclusion.
Since M (-, z) is maximal monotone, z € H is a solution of the problem
(2.1)ifand only if z € H, u € U(x), and v € V(z) such that (g—m)(z)N
dom(M(-, z)) # ¢ and f(z) — N(u,v) € M((g —m)(z), ).
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(1) If m = 0 and M(z,y) = M(x) for all y € H, where M : H — 28
is a maximal monotone mapping, then the problem (2.1) is equivalent to
finding z € H, u € U(x), and v € V(z) such that g(z)Ndom(M(z)) # ¢
and

(2.2) 0 € N(u,v) — f(z) + M(g(z)).

(1) If M(-,y) = 9¢(-,y) for each y € H, where ¢(-,y) : H —
R U {4oc} is a proper convex lower semicontinuous function on H
and Range(g — m) N dom(9¢(-,y)) # ¢ for each y € H and 9¢(-,y)
denote the subdifferential of function ¢(-,y), then the problem (2.1)
is equivalent to finding * € H, u € U(z), and v € V(x) such that
(9 —m)(z) N dom(9¢(-,z)) # ¢ and
(2.3)

(N(u,v) = f(z),y — (g —m)(x)) > ¢((g — m)(x),7) — $(y,7), “y€H.

(1) If M(-,y) = 09, for all y € H, where 0¢ denotes the subd-
ifferential of a proper, convex, and lower semicontinuous function ¢ :
H — RU {+4cc}, then the problem (2.1) is equivalent to finding € H,
u € U(z), and v € V(z) such that (g — m)(z) N dom(d¢) # ¢ and

(24) (N(u,v)~f(2),y—(g—m)(2)) = $((9—m)(z)) —o(y), "y € H.

It is clear that the generalized quasivariational inclusion (2.1) includes
of many known variational inequalities and quasivariational inequalities
[5, 7-10, 14-17].

3. Main results

First of all, we prove the following lemma.

LEMMA 3.1. z € H, uw € U(x), and v € V(z) is a solution of (2.1) if
and only if for some given p > 0, the mapping F : H — 2 defined by

F(2) = Uyeu(z) Yvev iz — (g — m)(x)

(3.1) I JPM("I)[(Q —m)(z) — p(N(u,v) — f(x))]}

has a fixed point, where JMC®) = (I + pM(-,z))~! is the so-called
proximal mapping on H.
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Proof. Let x be a fixed point of F, i.e., there exist u € U(z) and
v € V(z) such that

z=z—(g—m)(@)+ 1 D (g - m)(z) — p(N(u,v) — f(2))]

Then we have

(g —m)(2) = 1D [(g — m)(2) - p(N(u,v) — f(2))]-

From the definition of the proximal mapping J,I,VI 2

, we get
f(z) = N(u,v) € M((g —m)(z), z).

Hence z € H is a solution of the problem (2.1).
Conversely, if z € H is a solution of the problem (2.1), then there exist
x € H,uc U(z), and v € V() such that (¢g—m)(z)Ndom(M (-, z)) # ¢
and
0 € N(u,v) — f(z) + M((g — m)(z), z).

Hence, we have
(g —m)(z) — p(N(u,v) — f(2)) € (g — m)(z) + pM((g — m)(z),z).
From the definition of the proximal mapping J,ﬁw <"$>, we get

(9 — m)(z) = MO (g — m)(z) — p(N(u,v) — f(2))]-
From this we obtain
z=1x—(g—m)(x)+ I} [(g—m)(z) - p(N(v,v) — f(2))].
This means that z is a fixed point of F. O

THEOREM 3.1. Let the operator N(-,-) be a-strongly monotone and
B-Lipschitz continuous with respect to the first argument. Let f,g,m :
H — H be Lipschitz continuous with Lipschitz constants ¢, &, and ¢
respectively, and g — m be strongly monotone with constant o. Assume
that

(3.2) (m(z) —m(y), g(z) — 9(¥)) = M|z —ylI*>, "z,yeH
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for some constant A such that A\g < A < £g, where

Ao = inf{s : {m(z) —m(y),9(x) — 9(v)) < sllz —ylI*,"e,y € H}.

Moreover, the operator N(-,-) : H x H — H is ~-Lipschitz continuous
with respect to the second argument. Let U,V : H — C(H) be p-
H-Lipschitz, and v-H-Lipschitz respectively. Suppose there exists a
constant 11 > 0 such that for each x,y,z € H,

(3.3) 17707 (z) = I EV ()| < nllz =yl
If the following conditions hold

—(1—k)(5+w)|
B2u? — (6 + yv)?

\ﬁl—(l— )(6 + yv)]? — k(B5%p? —(5+W)2)(2—k)
B2u? — (0 +yv)?

(3.4)

a> (1= k)(6+7v) + VEFEE = (6 + @ - h),

Bu>d+~yv, pld+qv)<1-—k,

k=2y1-20+e2+& -2\ +n, k<1,

then the generalized quasivariational inequality problem (2.1) has a so-
Iution.

Proof. From Lemma 3.1, it is enough to show that the mapping

F(2) = Uyev(e) Ynev(a) {2 = (9 = m) () + J102 (g — m)(z)
— p(N(u,v) = f(z))]}

has a fixed point. For any z1,22 € H, p € F(z1), and ¢ € F(z2), there
exist u; € U(z1), v1 € V(21), uz € U(zz), and vy € V(x2) such that

p=z1—(g—m)(z1) + 1T [(g — m)(z1)
— p(N(ug,v1) — f(x1))],

g =z — (9 — m)(x2) + JMC=I[(g — m)(z2)
— p(N (ug,v2) — f(22))].
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Then, by the condition (3.3) we have

lp—qll

< flor — @2 — [(g — m) (1) = (g — m)(2)]]
+ JTM = (g~ m)(1) — p(N (u1,v1) — f(21))]
— JMCED[(g — m)(x2) — p(N (ug, v2) — f(x2))]|

< o1 — 22 — [(9 — m)(21) — (g — m)(z2)]]]
+ |7 (g = m) (1) — p(N (ug,v1) — f(z1))]
— JMCE[(g = m)(w2) — p(N (uz,v2) — fz2))]]|

(35) 4 IMC= (g — m)(z2) — p(N(uz,v2) — f(x2))]

— JYO= (g — m)(@2) — p(N (uz,v2) — f(z2))]l

< 2l|zy — 2 — [(g — m)(w1) — (g — m)(z2)]|
+ pllf(z1) — f(22)|| + |21 — 22 — p(N (u1,v1) — N(ug,v2))|l
+ nllzy — 22|

< 2[[z; — 22 — [(g — m)(21) — (g — m)(z)]
+ pllf(z1) = fl@)|| + lzr — 22 — p(N (u1,v1) — N(ug,v1))]|
+ plIN (uz,v1) — N(uz,v2)|l + nllzy — z2||.

By the Lipschitz continuity of f, g, m, the strong monotonicity of g —m
and the condition (3.2), we have

21 — 22 — [(9 — m)(21) — (9 — m)(22)]If?
< ey = @2)|® — 2(z1 — 22, (9 — m)(z1) — (9 — m)(22))
+ (g — m)(z1) — (g —m)(x2)|?
(3.6) < w1 —za)® = 2(z1 — 32, (9 — m)(21) — (g — m)(22))
+ llg(z1) — g(@2)|I* — 2{g(x1) — g(z2), m(z1) — m(x2))
+ Jm(z1) — m(z2)|?
< (1— 20+ &2 = 2\ + £?)||z1 — =22

Since N(-,-) is a-strongly monotone and (-Lipschitz continuous with
respect to the first argument and p-H-Lipschitz continuity of U, we
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have that
|21 — 22 — p(N (u1,v1) — N(U27U1))||2

= |jz1 — ol — 2p(N (u1,v1) — N (ug,v1), 21 — @2)
+ PPN (u1,01) = N(uz, v1)|f?

<z - 2||* — 2p(N (u1,v1) — N(ug,v1), 21 — 22)
+ P20 ur — ual)?

< lzr = z2)1* = 20(N (u1,v1) — N(uz, v1), 21 — z2)
+ PPBH(U(21),Ulz2)))?

< (1=2pa+ p*B212) |21 — 2%,

where H(-,-) is the Hausdorff metric on C(H). Using the ~y-Lipschitz
continuity of the operator N (-, ) with respect to the second argument
and the v-H-Lipschitz continuity of V| we get

|V (uz,v1) — N(ug,v2)|| < vy — ve]
(3.8) < AH(V(x1), V(x2))

< ||z — z2|.

(3.7)

From (3.5)-(3.8), we have
D(F(z1), F(x2)) < [2V/1 =20+ &2 =2\ + €2 + 1+ pd

+ pyw+ V1= 2pa + p? 22|21 — o
= [k+ (8 +yv)p+tp)]llr1 — 22l
= 0”331 - 1172”,

where § = k + (6 +yw)p + t(p), k = 2¢/1 — 20+ &2 — 2\ + €2 + 7,
t(p) = /1 —2pa + p232u2, and D(A, B) =sup{|la — b|| : a € A,b € B}
for any A,B € 2¥. From (3.4), it follows that # < 1. Thus the map
F defined by (3.1) has a fixed point « € H such that v € U(z), v €
V(z) satisfying the generalized quasivariational inequality (2.1). This
completes the proof. 0

The relation (3.1) can be written as

z =z — (g -m)(x)+ J}P (g —m)(z) — p(N(u,0) = f(z))],

where p > 0 is a constant.
This fixed point formulation allows us to suggest the following unified
three step iterative algorithm.
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Algorithm 3.1

Assume that U,V : H — C(H), f,g,m : H — H, and N(,-) :
H x H — H are operators. For a given xo € H, ug € U(xyp), vg € V(2¢),

compute the sequences {z,}, {yn}, {zn}, {un}, {vn}, {Un}, {Tn}, {ul},
and {v}} by the iterative schemes

Un € U(xn) @ Juns1 — unll < HU(2n41), Ulzn)),

Up € V(mn) : “Un-l-l - Un“ S H<V(xn+1)a V(xn)),

Un € U(yn) : 8n+1 = Gnl < HU(yYn+1), Ulyn)),
Un € V(yn) : |01 = nll < H(V(Yn41), V(yn)),
Uy, € U(zn) : |lupy1 — tpll < H(U(2n41), U(2n)),
v € Vi(zn) : lop g —opll € H(V(2n41), Vi(zn)),

Yn = (1 — m)zn + mi{zn — (g — m)(zn)

&9 + 10 (g = m) (@n) = p(N (un, v) — f(n))]},
(3 10) Zn = (1 - ﬂn)mn + ﬂn{yn - (g - m)(yn)

. + 0¥ (g —m)(yn) — p(N (En, Tn) — Flyn))]},
(3.10) Tn+1 = (1 — ap)zn + anfzn — (g — m)(z,)

' + IO (g = m)(2n) — p(N (uf, v5) = f(za))]}
forn =0,1,2, -+, where 0 < ap, By, 7n < lforalln >0and ) .o«

diverges. For v, = 0, Algorithm 3.1 is the Ishikawa iterative scheme.

THEOREM 3.2. Let the operator N(-,-) : H x H — H, f,g,m
H — H satisfy all the assumptions of Theorem 3.1. If the conditions
(3.2)-(3.4) are hold, then the approximate solution {x,} obtained from
Algorithm 3.1 converges to the exact solution x of the generalized qua-
sivariational inequality (2.1).



Generalized quasivariational inclusions 9

Proof. From Theorem 3.1, we see that there exists a unique solution
x € H such that u € U(z), v € V(z) satisfying the generalized quasi-
variational inequality (2.1). Then by Lemma 3.1, there exist x € H,
u € U(zx), and v € V() such that

z=ga—(g—m)z+J)YD(g-m)(z) - p(N(u,v) - f(2))]
= (1= an)z + an{z — (g — m)(x) + J"07[(g — m)(x)
(3.12) — p(N(u,v) = f(z))]}
= (1= Bn)z + Bufz — (9 — m)(z) + T}/ [(g — m)(z)
= p(N(u,v) = f(z))]}-
Then we have
Znr1 — ||
< (L =an)lzn — 2| + anllzn =z = (g = m)(20) — (g — m)(@)]||
+ a0 [(g — m)(za) = p(N(uy,, v) = f(2n))]
— YD (g —m)(z) - p(N(u,v) - f(z))]]
< (1 —an)llzn — 2l + anllzn —z = [(g — m)(2n) — (g — m)(@)|l
+ | I (g — m)(2a) — p(N (uf,v}) = f(2n))]
— Y C (g —m)(x) - p(N(u,v) — f ()]l
+ || I (g — m) (@) — p(N(u,v) — f(x))]
— J)0D(g - m)(z) - p(N(u,v) — f(=))]|
< (= anllzn — 2l + 20nllzn — 2 — [(g — m)(2n) — (g — m)(2)]|
+ anpllf(zn) = f(@)|| + anllzn — 2 = p(N(up, v7) = N(u, v))]]
+ annllzn — |
< (1= an)llzn =zl + 2an]l2n — 2 = [(9 = m)(2) — (g — m)(2)]||
+ anpl f(zn) = f(@)] + anllzn —x — p[N(uy,, v7) — N(u,vp)]ll
+ anp||N(u,vy) = N(u,v)[| + annllzn — =|.
By using of (3.6)-(3.8), we obtain

”xn+l - 3;‘”
< (1= an)||zn — || + on[2¢/1 — 20 + €2 — 2) + €2
(3.13) + N+ p6 + pyv + V1 = 2pa + p?B%u3)| 20 — x

< (1 —an)llzn — 2l + anlk + (8 +yv)p + t(p)]l|zn — =
< (1= on)llzn — 2l + anbl|zn — 2|,
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where 8 = k + (6 + y)p + t(p), k = 2/1 — 20 + €2 — 2X + 2 + 7, and
t(p) = /1 — 2pa + p?G?u2. From (3.4), we see that § < 1. In a similar
way, from {3.10) and (3.12), we have

(3.14) lzn ~— 2l < (1 - Bn)llzn — 2l + Bubllyn — |
and from (3.9) and (3.12), we obtain

ym — 2l < (1= ) n — 2| + Yublln —
(3.15) < lan - 2.

From (3.14) and (3.15), we see that

hon — ) < (1 Bullzn — 2l + Bublizn — ]
(3.16) < flan - 2]l

Combining (3.13) and (3.16), we have

Zns1 — 2l < (1 - an)lzn — off + anbllzn — 2|
= [ =1 -0)an]ltn — x|
<[l - (1 - faslllze — |-

Since Yoo, @ diverges and 1 — ¢ > 0, we see that limy, oo 7 o[l —
(1 — A} = 0. Cousequently, the sequence {z,} converges strongly ta
z. From (3.15) and (3.16), it follows that the sequences {y,} and {z,}
also converge to z in H. O
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