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ANALYTIC PROPERTIES OF THE LIMITS OF THE
EVEN AND ODD HYPERPOWER SEQUENCES

YunHI CHO AND YOUNG-ONE KiM
Dedicated to the memory of the late professor Eulyong Pak.

ABSTRACT. Let he(x) and ho(x) denote the limits of the sequences
{?"z} and {21z}, respectively. Asymptotic formulas for the
functions he and h, at the points e~® and 0 are established.

1. Introduction

For z > 0 the hyperpowers of z, denoted by %z, 'z, %z, ..., are defined
inductively as follows:

Oy =1 and "tz =z"9,

Throughout this paper, we adopt the convention that 0Y = 1 and 0! = 0,
so that 20 = 1 and ?**10 = 0 for all non-negative integers n: The even
and odd hyperpower sequences {*"z} and {*"*lz} converge to 1 and
0 respectively when z = 0. Since "1 = 1 for all n, the hyperpower
sequence {"z} converges to 1 when z = 1.

From the definition, if one of the sequences {*"z} and {*"*!z} con-
verges, then so does the other. In fact, it is well known that they con-
verge if and only if z € [0,e'/¢]. (See [4] and [7].) We denote their limits
by he(x) and h,(x), respectively:

he(z) = lim *"z and ho(z) = lim >tz (0 <z <ee).

It is clear that z"<(®) = h,(z) and 2"*® = h,(z). Therefore if he(z) = y
or ho(z) =y, then 2*° =y,

Received April 18, 2003.
2000 Mathematics Subject Classification: 26A06, 26A18, 26A24.
Key words and phrases: approximation, asymptotic formula, hyperpower sequence.



28 Yunhi Cho and Young-One Kim

Many authors have dealt with the hyperpower sequences, their limits
and related objects. (See [1], [3], [4] and [7]. Especially, [4] and its
references.) Among the results, the following are established in [4] and

[7].

(1) They are continuous in [0,e!/¢] and analytic in (0,e7¢) U (e™¢,
el’/e).

(2) he(0) =1, hyo(0) = 0, he is strictly decreasing but A, is strictly
increasing in [0,e7¢], and h.(e~¢) = ho(e™%) = e~'. In particu-
lar, ho(z) < he(z) for z € [0,e7°).

(3) If z € [e~¢, e'/¢], then h.(x) = ho(x); and h.(e'/®) = h,(e!/®) =
e.

As a consequence, the sequence {"z} converges if and only if z €
[e7¢, el/¢]. We denote the limit by h(x): If z € [e7°,e/¢], then he(z) =
ho(z) = h(z) and zM® = h(z). In particular, the function h : [e~*, e/¢]
— [e71, €] is the inverse of the strictly increasing function [e™!, €] 3 z —
x1/% € [e~¢,el/¢]. Therefore the properties of h can be derived from
those of £ — z'/%. On the other hand, for a € (0,e™¢) the functions
he and h, can be approximated by their Taylor polynomials in a neigh-
borhood of a, because they are analytic at a. (The general properties of
analytic functions that are needed in this paper can be found in [5, Chap-
ter 2] and [6, Chapter 10].) Since 2= = h(z) and 2= = hy(z),
we can calculate, at least theoretically, the Taylor polynomials by im-
plicit differentiations. It seems, however, few results are known about
the behavior of h. and h, at the points e~ ¢ and 0.

In this paper, we describe the asymptotic behavior of h.(z) and h,(x)
for x — e~ ¢ with £ < e7® and for x — 0 with z > 0: We shall use the
Landau O- and o-notation. (For the definition, see [2, Chapter 1].) The
main results are stated and explained in Section 2. In Section 3, we
briefly state some basic properties of the functions h. and h,. Finally,
in Sections 4 and 5, we prove the main results.

2. Main results

We start this section by explaining the speed of convergence of the
sequences {?"z} and {?*"*'z}. For n = 0,1,2,... we set Up(z) =
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+2p _ 2ng and V,(z) = 273z — 22 lg, so that

he(z) = "z + ZU" and
(2.1)

ho(z) = 2"Flg + Z Vi(z) (0 <z <el/®)
k=n

for every n. In the next section, we will show that
lim ——U"(x) = lim Vo (2)
(2.2) n—oo Un_i(x)  n—oo Vioi(z)
= log he(z) log ho(x) (0<z<es, z#1).

Since h(e7¢) = ho(e7¢) = ™!, we have log he(e7¢) log ho(e™¢) = 1, and
we will show that log h.(z)log h,(z) — 0 as z — 0+. (See Proposition
4.5.) This implies that the sequences {2"z} and {?"*1x} converge very
slowly when x is near e™¢, but very fast when z is near 0.

To describe the behavior of h. and h, at e™¢, we represent them
without using the sequences {?"z} and {?"*'z}; and at 0, approximate
them with the sequences. The following is proved in Section 4.

THEOREM 2.1. There is a continuous and bijective function ¢ :
[—e~¢/2,e=¢/2] — [0, 1] such that

(1) ¢ is analytic in (—e~®/2 e=¢/?),

(2) ¢'(s) >0 for s € (—e~¢/2 e=¢/2),

) #(0) = e, |
(4) he(z) = p(Ve ¢ —z) for z € [0,e7¢], and
(5) ho(z) = p(—Ve=¢ —2z) for x € [0,e7°).

For k = 0,1,2,... we set ax = ©® (0)/k!. Since ¢ is analytic at 0,
there is a positive constant § such that > p., ars® converges absolutely
to @(s) for every s € (—6,6). In particular, we obtain the following:

COROLLARY. Suppose n is a non-negative integer. Then, forz — e™¢
with ¢ < e~ ¢, the following hold:

he(z) = Z ar(e™® — .’I))k/2 +0 ((e—e _ x)(n+1)/2) and

ho(z) = zn:(—l)’“ak(e‘e —z)*2 4+ 0 ((e—e — $)<n+1>/2) _
k=0
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Since ¢(0) = e~!, we have ag = e~!. To determine the coefficients
ai,as, ..., we put t = e®/2s and write
(2.3) o(s) =e! (1 + At (1 + ant">>,
n=1
so that a; = e A4e®/? and a, = e 14e™/2b,_1 for n = 2,3,.... The

right-hand side converges absolutely for all ¢ sufficiently close to 0. Since
he(z)logz = log ho(x) and hy(z)logz = logh.(z) for all z € (0,e€,
Theorem 2.1 implies that

(24)  @(-s)log(e™ — ) =logp(s) (e /* <s<e ).

In Section 4, we will show that an analytic function ¢ is uniquely deter-
mined by this equation and the condition that ¢'(0) > 0. (See Proposi-
tion 4.6.) From (2.3) and (2.4),

<I—At <1+Z 1) t")) <—e—g%t2">

m+1 0 m
—1+Z L Ay 1+ant"
n=1
for all ¢ suf‘ﬁc1ently close to 0; and we have 4 > 0, because ¢'(0) > 0.
Hence, by comparing the coefficients of both sides of this equation, one
can determine A, by, bo, ... successively For instance, A = /6/e, by =
57 9 16547
§A, b =g 360A2 by = 15 A— HA% by =g 1160A2 + 604800A4 and

bs = %A A3 1}3‘;5 A5 This result and the corollary to Theorem
2.1 describe the asymptotic behavior of he(z) and ho(x) for x — e™°

with £ < e™€. For instance, we have
he(z) = et + V6el™/2eme 2 £ O (e —2) and
ho(z) = e = V6ele™/2\/e=e — 3z + O (7 — z) .
REMARKS 2.1. (i) The result shows that the curves y = he(z) and
y = ho(z) have a vertical tangent at (e~¢,e~!), and hence h, and h, are

not analytic at the point e™®. (ii) It seems that Y oo, [bk] < oo. If it
were true, we would have

k/ 2 and

Zak
ho(@) = 3 (~DFar(e™ —a)*?  (0<z<e™),
k=0
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and the series converge absolutely for every z € [0,e7¢]. The authors
do not know how to prove this.

To describe the behavior of k. and h, at 0, we introduce the polyno-
mials Py, P1, P, ... and Qg, Q1,Q2,... that are defined inductively as
follows: Py = Q9 = 1, and

Pu(y) = lim o™ (exp (101 - ix’“Pk(y)) ,
k=1 k=0
Qn(y) = lim z™" (eXp (Z w'“yPk(y)) - Z_: 96'“Qk(y)) :
k=0

k=1

In Section 5, we will prove that these polynomials are well defined, and
that deg P, = 2n—1 and deg @, = 2n for n > 1. (See Lemma 5.1, (5.4),
(5.5) and Proposition 5.2.) A direct calculation shows that P;(y) = y,
Qu(y) = v*, Paly) = 39° +°, Qa(y) = 39> + 39*, Pa(y) = §v° + 3y +
3v°, Qs(y) = sy* +2y° + 845, and so on. In the same section, the
following are proved:

PROPOSITION 2.2. Suppose n is a non-negative integer. Then, for
x — 0+, the following hold:

Ny = Z z*Py(logz) + O (" logz[*"*!)  and
k=0

n
ntly —g Z z*Qx(logz) + O (2| log z|*"*?) .

k=0

ProroOSITION 2.3. For each € > 0 there is a & > (0 such that if
0 < z < 4, then the inequalities

lhe(m) . 2nx| S (1 + 6)n-}-lxn-i—1| logx|2"+1

and
Iho(fﬂ) _ 2n+1$| < (1 + E)n+2xn—i—2| logac|2"+2
hold for all non-negative integers n.

As an immediate consequence of these propositions, we obtain the
following;:
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THEOREM 2.4. Suppose n is a non-negative integer. Then, for t —
0+, the following hold:

he(z) = Z 2" Py(logz) + O (z™1!|log z[***!)  and
k=0

ho(z) =2 Z z*Qr(logz) + O (22| log z|>"1?) .
k=0

This theorem describes the asymptotic behavior of he(z) and h,(z)
for x — 0 with z > 0. For instance, we have

he(z) =1+ zlogz + O (z*|logz|*) and

(25) ho(z) = z + 2*(log )% + O (2| log z|*) .

REMARKS 2.2. (i} The result shows that h. and h, cannot be ex-
tended to analytic functions in an open interval containing 0. (ii) The
result also shows that the right-hand derivative of h, at 0 does not ex-
ist, but that of h, exists and is equal to 1. (iii) Theorem 2.4 gives no
information about the convergence of the series

Zxkpk(logx) and ZkaQk(log:p).

k=0 k=0
It seems, however, that for every z € (0, el/ €] these series converge to
he(z) and h,(x), respectively.

Finally, the following shows that h, can be extended to a C'-function
in an open interval containing 0, but not to a C?-one.

PROPOSITION 2.5. Al (z) — 1 and z7}(h(z) — 1) — o0 as z — 0+.

This proposition also is proved in Section 5.

3. Preliminaries

In this short section, we state some basic properties of the functions
he and h,. First of all, it is easy to see that if z € [0, 1], then

2n+1x S 2n+2x < 2n d 2n+2x > 2n+3x > 2n+1x‘

T an
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From this, it follows that 2" tlg < h,(z) < he(z) < 2"z for all z € [0, 1].
On the other hand, it is not hard to see that if x € [0,e7¢], then "1z <
e”1 <27y, (See [4, p. 242] and [7, p. 14].) Consequently,

Mty < ho(x) < e < helz) € 2 0<z<e™®, n=0,1,2,...).
In particular,

(3.1) 0<ho(z)<e ' <hefz)<1l (0<z<e @)

Since he(z) = 2@ and hy(z) = z"(*) whenever the sequences
converge, and since he(z), ho(z) > 0 for x € (0, e'/¢], we have

(3.2) he(z)/ "o = po()/ M@ =4 (0 <z <el/®),
and hence
(3.3) he(2)* @) = ho(z)e® (0 <z < eVe).

We close this section by proving (2.2).

Proof of (2.2). Suppose that z € (0,e*/¢]\ {1}. Then the sequences
{U,(2)} and {V,(x)} converge to zero. Since U,(z) = ?"*2z — 2"z =
g (exp(Vn—1(x)log z) — 1), this implies that

) Un(IE) ) ) eVn_l(x) logz _ 1
lim = lim “"z = he(z)logz = log ho(x).
Jim s = lim T (2)log 2 = og ho(2)
Similarly,
- Valz)
nh_)rr;o Un() ~ log he(x).
Now the result is obvious. O

4. Proof of Theorem 2.1

In this section, the following lemma will play a basic role. The proof
is trivial.
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LEMMA 4.1. Let f be a real analytic function defined in an open
interval (a,b), and suppose that c € (a,b), f(z) > 0 for z # ¢, f(c) =
f'(c)=0, and f"(c) # 0. If f is defined by

) =V ) (a<z<eo),
f(x)_{ f@)  (c<z<b)

then f is analytic in (a,b) and f'(c) = \/f"(c)/2.

Note that we must have f”(c) > 0.
We need to introduce some functions and establish their properties.
Let the function F : [0,1] — [-v1 —e~1/¢,\/1 — e~1/¢] be defined by

— T — e-1/e (ngée*l),
Vzr —e~le (el <z <1).

Fr) =

This function is well defined, continuous and bijective; Lemma 4.1 im-
plies that F' is analytic in (0,1); and it is clear that F'(z) > 0 for all
z € (0,1).

Let G denote the function

0,1] 52 F{(~F(z)) € [0, 1].

Then G(0) = 1, G(e7!) = e7}, G(1) = 0, G is continuous in [0, 1],
analytic in (0, 1), and we have G'(z) < 0 for z € (0,1). It is easy to see
that G(G(z)) = = and G(z)%®) = 2* for z € [0,1]. From this, (3.1) and
(3.3), we obtain
(4.1) he(z) = G(ho(z)) and  ho(z) = G(he(z)) 0<z<e™®,
and
(4.2) G(z)log G(z) = zlogx 0<z<1).

Since G(e™!) = e !, G'(e7!) < 0 and G(G(z)) = =, we have G'(e™!)

= —1. In a neighborhood of €1, the analytic function G is represented
by an absolutely convergent power series:

G(zx) = Z en(z —e )"
n=0
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We have ¢y = e ! and ¢; = —1, because G(e™}) = et and G'(e™!) =
—1. Hence, using (4.2), one can determine the coefficients ca,cs,. ..
successively. For instance, ¢y = %e, c3 = —562, Ccqy = 21—77063, and ¢c5 =
—g2Le*. Note that an analytic function G : (0,1) — R is uniquely
determined by (4.2) and the condition that G'(e™!) < 0.

We can parameterize the curve y = G(z) as follows: Put z7*G(z) = t.
As z increases from 0 to 1, t decreases from oo to 0; and t = 1 if and
only if z = e~!. From (4.2) one can easily deduce that
(4.3)

t 1
logz =

1 1 =
1_togt and logG(z) T3

and this is equivalent to

logt (0<t<oo, t#1),

z=tT7 and y=tT7 (0<t<oo, t#]1)

We remark that an equivalent version of this parameterization is due to
Goldbach. See [4, p. 237].

LEMMA 4.2. The function z — log x log G(z) is strictly increasing in
(0,e71), has maximum value 1 at x = e™!, and is strictly decreasing in
(e71,1); and

lim logzlogG(z) = lim logzlog G(z) = 0.
z—0+ T—1—

Proof. If we put z7!G(x) = t, then t decreases from oo to 0 as
increases from 0 to 1, t = 1 if and only if z = e~ !, and (4.3) implies that

10gm10gG(x)=t<Zlo—_gil>2 0<t<oo, t#1).
Now, the result is proved by calculus. O
Define H by |
z =0),
H(=) = { 2?(3:)1/’” Eo < g)s 1).

This function is analytic in (0, 1), continuous at 1, and H(1) = 0. More-
over, H is continuous at 0 too: Since 0 < G(z) < 1 and G(z)¢®) = z*
for z € [0,1], we have

0< H(z)* =G(z) < G@)°® =2 (0<z<1),

and hence
0<H(z)<x (0<x<1).
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PROPOSITION 4.3. Ifz € [0,e7¢], then H(h.(z)) = H(h,(z)) = z.
Proof. The result follows from (3.2), (4.1) and the definition of H.[]

PROPOSITION 4.4. H'(z) > 0 for z € (0,e™!), H'(z) < 0 forz €
(e71,1), H(e™') =e¢, H'(e7!) =0, and H"(e71) = —3e3°.

Proof. First of all, the last three assertions are proved by straight-
forward calculation, because G(e™!) = e, G'(e7!) = -1, G”(e7!) =
2cy = 2e, and H(z) = G(2)/* for z € (0, 1).

By differentiating both sides of (4.2), we obtain G’ (z)(1 +log G(z)) =
1+ log x, which is valid for all € (0,1). On the other hand, log H(z) =
z llog G(z) for x € (0,1). Hence, by straightforward calculation, we
have

H'(z) —G(x)logG(x)(1+logG(z))+ z(1+ logz)
H(z) 22G(z) (1 + log G(z))

O<z<l, z#el).
The right-hand side is simplified with the aid of (4.2):

H'(z) —=xlogz (1+logG(x))+ z(1+ logx)
H(z) z2G(z) (1 + log G())
1 —logzlog G(x)

= 2602 (1 F1og C(a)) O<z<l, z#el).

(4.4)

Lemma 4.2 implies that 1 —logzlog G(x) > 0 for all z € (0,1) with z #
e~1, and it is clear that xG(z) > 0 for all z € (0,1). From this, the first

two assertions follow, because G is strictly decreasing and log G(e™ 1) =
—1. O

Now, we can prove Theorem 2.1.

Proof of Theorem 2.1. Let the function H : [0,1] — [—e~¢/2 e~¢/2]
be defined by

From Lemma 4.1 and Proposition 4.4, we have the following: H is well
defined, continuous, bijective, H(e™!) = 0, H is analytic in (0,1) and
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H'(z) > 0 for all ¢ € (0,1). Moreover (3.1), Proposition 4.3, and the
definition of H imply that
(4.5)
H(he(z)) =Ve—¢—z and H(ho(z)) =—Ve<*—z (0<z<e™®).
If we denote the inverse of H by ¢, then ¢ is continuous in [—e_e/ 2
e~¢/?], analytic in (—e~¢/2,e7%/2), /(s) > 0 for all s € (—e~¢/2 e7%/2),
©(0) = e71, and (4.5) is equivalent to

o~
o
&

l

p(vVe ¢ —z) and
ho(z) = p(—Ve e —z) (0<z<e™®).

This proves Theorem 2.1, O

At this point, it should be remarked that (3.1) and (3.2) are the only
properties of h. and h, that are used in our proof of Theorem 2.1: (3.3)
is a consequence of (3.2).

It remains to prove the following two propositions.

PROPOSITION 4.5. log he(x)log hy(z) — 0 as z — 0+.

PROPOSITION 4.6. Let ¢ : (~e“e/2, 6—6/2) — R be an analytic func-
tion. Suppose that @'(0) > 0 and

(4.6)  @(—s)log(e™® — %) =log@(s) (—e"¢*<s<e®/?).

Then ¢(s) = ¢(s) for all s € (—e~¢/2 e~¢/?),

Proof of Proposition 4.5. Theorem 2.1 implies that h. is continuous
at 0. Hence he(z) — he(0) = 1 as  — 0+. From (4.1), we have
log he(z) log ho(x) = log he(x) log G(he(z)). Therefore the result follows
from Lemma 4.2. a

Proof of Proposition 4.6. First of all, (4.6) implies that ¢(0) = e~1.
Since ¢'(0) > 0, there is a positive real number a, with a < e~¢/2, such
that ¢ is increasing in the interval (—a,a). Since 0 < @(0) = e ! < 1,
we may assume, by taking a sufficiently small, that 0 < $(—a) < e™! <
@(a) < 1.

For z € (e=¢ — a2, e~¢] define h.(z) and ho(x) by

he(z) = @(Veme —x) and ho(z) = (—Ve—e —z).
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Since ¢ is increasing in (—a,a) and 0 < @(—a) < P(0) = e~ < p(a) < 1,
we have
0< holz) <e ! <helz) <1 (et —a’ <z <e®).
Moreover, (4.6) implies that
ﬁe(m)l/ﬁo(””) = ﬁo(x)l/ﬁe“”) =z (e —a? <z <e®).

Hence essentially the same argument as the proof of Theorem 2.1 shows
that .

he(z) = p(Ve~¢ —zx) and

ho(z) = p(—Ve=¢ ~ ) (et —a? <z <e™®).

Therefore ¢(s) = ¢(s) for all s € (—a,a). From this, we obtain the
desired result. O

5. Proofs of Propositions 2.2, 2.3 and 2.5

For z,y € R we define ho(z,y),hi(z,y), he(z,y),... as follows:
ho(l’,y) = ]-7 and
hon+1(,y) = zexp (yhon(z,y) — ¥),
hant2(,y) = exp (Yhont1(z,y)) .

For instance, hi(z,y) = z, he(z,y) = 1 + zy + 32%y? + -+, and so on.
It is clear that "z = h,(z,logz) for z > 0 and n =0, 1,2

LEMMA 5.1. For each non-negative integer n there are polynomials
P(n’()), . ,P(n’n) and Q(n,())a cee ,Q(n,n), with deg P(n,k) = max{O, 2]6—1}
and deg Qn ) = 2k for all k, such that

(5.1)  hon(z,y) = Zx Pop) +0 (™) (z—0)
and

(5.2) hont1(z,y) = Zku(n,k) (y)+0 ($n+2) (z —0)
k=0

hold for each fixed y.
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Proof. First of all, we set P, ) = Qn,0) = 1 for all non-negative
integers n: The lemma holds trivially when n = 0. For each posi-
tive integer n let P(n) denote the statement that there are polynomials
Py, -+ Pinony, with deg Py, k) = 2k — 1 for all k, such that (5.1)
holds for each fixed y; and Q(n) the statement that there are polyno-
mials Q(n.1),-- -, Q(n,n), With deg Q(, k) = 2k for all k, such that (5.2)
holds for each ﬁxed y. Since ho(z,y) = 1+ zy + 11:2y2 +---, P(1) is
obvious, with Py 1)(y) = y. Hence the lemma will follow once we show
that P(n) implies Q(n) and Q(n) implies P(n + 1).

Let n be arbitrary. Suppose that P(n) is true. For convenience, we
set ﬁ(n’k) (¥) = yPur(y): It is clear that deg P(n,k) = 2k. For each
fixed y we have

hon+1(z,y) = Texp (yhan(z,y) — y)

= xexp <Z :Ekp(n,k:)(y) +0 (an))

k=1
= zexp <Z xkp(n,k)(y)) + O (z"?) (z — 0).
k=1
Since deg P(n,k) = 2k for all k, it follows that
(5.3)
exp (Z l‘kp(n,k)(y)) =14 2" Qi@ +0 (")  (z—0)
k=1 k=1

for some polynomials Q, 1y, -, Q(nn), With degQ(, 1) = 2k for all k.
From this, Q(n) follows. The statement that Q(n) implies P(n + 1) is
proved similarly. a

For each non-negative integer n we set Pp, = Py, ny and Qn = Q(n,n)-
Then (5.3) implies that

(54) Quly)=lim ™" <exp(zxyP<nk> ) Zxcz<nk><y>)

for every positive integer n; and similarly,
(5.5)

P.(y) = ;l_r)%x_n (eXp(Z(E yQ(n 1,k—1) y)) ZLIJ P(n k) y))

for every positive integer n.
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PROPOSITION 5.2. Suppose 0 < k < n. Then Py = Pr and
Qn,k)y = Qk-

To prove this proposition as well as Propositions 2.2, 2.3 and 2.5, we
need some lemmas.

LEMMA 5.3. Suppose n is a non-negative integer. Then, for x — 0+,
the following hold:

Ny = Z z* Py (log z) + O (2" log 2> ™) and
k=0

n
Mty =g Z 2"Q (k) (log z) + O (22| log 2" +2)..
k=0

Proof. The proof is essentially the same as Lemma 5.1. O

LEMMA 5.4. For each non-negative integer n the following hold:
|Un(@)| < ho(z)"|logz|*™*,
[Vi(2)] < zho(z)™ Hlogz|>" "2 (0< < 1).

Proof. It is easy to see that the inequality
la — b] < max{a,b}|loga — log b

holds for all positive real numbers a and b. Let 0 < z < 1. Then the
sequence {?"z} is decreasing and {?"*lz} increasing. Since {?"z} is
decreasing, we have
Un(a)| = 420 = 2na]
< **z[log (*"**z) — log (*"x)|
2n—1

< g Prtlzlogx — x log z|

'2n+1x _ 2n—1wl

= 2"z | log x|
= 2"z |log x| |[Vp_1(z)] n=1,2,...),

and it is clear that |Up(z)| < z|logz|. Similarly,
Vo (2)| <232 |logz| |Un(z)| (n=0,1,2,...).

Now, the result is proved by induction, because 2"z < 1 and ?"*lz <
ho(z) for all n. O
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LEMMA 5.5. For each € > 0 there is a §, with 0 < § < e™¢, such that
if0 <z <4, then hy(z) < (1 +€)z.

Proof. From Propositions 4.3 and 4.4, the function h, : [0,e7¢] —
[0,e7!] is the inverse of H : [0,e7!] — [0,e7¢]. Hence the assertion
will follow once we prove that z !H(zx) — 1 as z — 0+, and that
4 (z71H(x)) < 0 for z € (0,e71).

Since G(z) — 1 as ¢ — 0+ and zlogz = G(z)log G(z) for z € (0,1),
we have

o0+ zloge | wo0+ G(z)logG(z)  s—1slogs

and since H(z) = G(x)Y/* = z'/G@ for z € (0,1),

1-G(z) I 1-G(=) . 1-s

1
logz 'H(z) =logH(z) — logz = G_(xSlng —logx

1 1 1-G(x) 9
= ——(1-G 1 = ————"1x(l .
G(x)( (z))log @ G(z) zlogz @(logz)
Thus logz~'H(z) — 0 as z — 0+, that is, 27 H(z) — 1 as z — 0+.
It remains to show that 2 (z~'H(z)) < 0 for z € (0,e™*). From
(4.4), we have

%bgw_lH(m) = }g((i)) - %
_ 1—logzlogG(z) ~ G(z) (1 + log G(z))
- zG(z) (1 +1log G(x)) '

Hence we need only to show that
(5.6) G(z)(1+logG(z)) +logzlogG(z) —1>0 O<z<e™?),

because z "' H(z) > 0 and zG(z) (1 + log G(z)) > 0 for = € (0,e71).

Suppose that 0 < z < e™!. Since e® > 1 + s for all s € R, we have
G(z) (1+1og G(z)) > (1 +log G(z))*; and hence the left-hand side of
(5.6) is greater than or equal to

(5.7) (14 log G(z))? + log zlog G(z) — 1.

If we put t = z71G(z), then t > 1; and (4.3) implies that (5.7) is equal
to (1—¢)72(2—2t+logt+tlogt)logt. From this, (5.6) follows, because
2—2t+logt+tlogt >0 forallt > 1. O

Now, we can prove Propositions 5.2, 2.2, 2.3 and 2.5.
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Proof of Proposition 5.2. The proposition will follow once we show
that for each non-negative integer n we have

Pory = Prnyrry and Qi) = Qni,k) (k=0,1,...,n).

Let n be arbitrary. For & = 0,1,...,n we set P} = Py,11x) — Pnk)-
Lemma 5.3 implies that

Un(l') — 2n+2x _ 2n$

= Y 2" P;(logz) + 2" Pni1 nen (log o)
k=0

+ O (z"]log z|*" 1)

for z — 0+. From Lemma 5.1, deg Piny1,n4+1) = 2n + 1; and Lemmas
5.4 and 5.5 imply that U, (z) = O (z"}|log z|*"*1) for z — 0+. Hence

Zka,’:(log z) = O (2" logz|*"*!) = o(z™) (z — 0+).
k=0

From this, we obtain Py = 0, P = 0,..., and P; = 0 successively.
Therefore P, k) = Pni1,k) for all k. The statement that Qe k) =
Q(n+1,k) for all k is proved similarly. O

Proof of Proposition 2.2. The proposition is an immediate conse-
quence of Proposition 5.2 and Lemma 5.3. O

Proof of Proposition 2.3. Let € > 0 be arbitrary. From Lemma 5.5,
there is a § > 0 such that if 0 < z < 4, then h,(x) < (1 + €)x. Suppose
that 0 < x < §. By Lemma 5.4, the inequalities

Un(z)] < (1 + &)z logz[*"T1  and
IVn(CU)| S (1 + 6)n+1$n+2|10g$‘2n+2

hold for all non-negative integers n. Since z(logx)? — 0 as £ — 0+, we
may assume, by replacing § with a smaller one, that

(1—(1+ez(ogz)®) ™t <1+e

Hence the desired result follows from (2.1). O
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Proof of Proposition 2.5. From Proposition 4.3, h,(x) = 1/H'(h,(z))
for € (0,e~¢). Hence we obtain, by (4.1) and (4.4),

(58)  hi(a) = Lelthele) A 1 loghe(z)

~ z (1 —log ho()log he(z)) 0<z<e™®).

Therefore hl(z) — 1 as z — 04, by (2.5) and Proposition 4.5.
It remains to show that z=1(h/(z) — 1) — oo as z — 0+. From (5.8),
ho(z) =1 _ ho(x)he(x) (1 +log he(x)) — x (1 — log ho(x) log e (x))
x 22 (1 — log ho(z) log he(x))

for x € (0,e7¢); and (2.5) implies that

ho(@)he(x) (1 + log he(z)) — = (1 — log ho(x) log he(2))
= 22% ((logz)® + log z) + O (2*|log z|*)

for x — 0+. Hence the desired result follows from Proposition 4.5. U
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