ANALYTIC PROPERTIES OF THE LIMITS OF THE EVEN AND ODD HYPERPOWER SEQUENCES

YUNHI CHO AND YOUNG-ONE KIM

Dedicated to the memory of the late professor Eulyong Pak.

ABSTRACT. Let $h_e(x)$ and $h_o(x)$ denote the limits of the sequences ${2nx}$ and ${2n+1x}$, respectively. Asymptotic formulas for the functions h_e and h_o at the points e^{-e} and 0 are established.

1. Introduction

For $x \ge 0$ the hyperpowers of x, denoted by $^0x, ^1x, ^2x, \ldots$, are defined inductively as follows:

$${}^{0}x = 1$$
 and ${}^{n+1}x = x^{(n}x)$.

Throughout this paper, we adopt the convention that $0^0 = 1$ and $0^1 = 0$, so that $^{2n}0 = 1$ and $^{2n+1}0 = 0$ for all non-negative integers n: The even and odd hyperpower sequences $\{^{2n}x\}$ and $\{^{2n+1}x\}$ converge to 1 and 0 respectively when x = 0. Since $^{n}1 = 1$ for all n, the hyperpower sequence $\{^{n}x\}$ converges to 1 when x = 1.

From the definition, if one of the sequences $\{^{2n}x\}$ and $\{^{2n+1}x\}$ converges, then so does the other. In fact, it is well known that they converge if and only if $x \in [0, e^{1/e}]$. (See [4] and [7].) We denote their limits by $h_e(x)$ and $h_o(x)$, respectively:

$$h_e(x) = \lim_{n \to \infty} {}^{2n}x$$
 and $h_o(x) = \lim_{n \to \infty} {}^{2n+1}x$ $(0 \le x \le e^{1/e}).$

It is clear that $x^{h_e(x)} = h_o(x)$ and $x^{h_o(x)} = h_e(x)$. Therefore if $h_e(x) = y$ or $h_o(x) = y$, then $x^{x^y} = y$.

Received April 18, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 26A06, 26A18, 26A24.

Key words and phrases: approximation, asymptotic formula, hyperpower sequence.

Many authors have dealt with the hyperpower sequences, their limits and related objects. (See [1], [3], [4] and [7]. Especially, [4] and its references.) Among the results, the following are established in [4] and [7].

- (1) They are continuous in $[0, e^{1/e}]$ and analytic in $(0, e^{-e}) \cup (e^{-e}, e^{1/e})$.
- (2) $h_e(0) = 1$, $h_o(0) = 0$, h_e is strictly decreasing but h_o is strictly increasing in $[0, e^{-e}]$, and $h_e(e^{-e}) = h_o(e^{-e}) = e^{-1}$. In particular, $h_o(x) < h_e(x)$ for $x \in [0, e^{-e})$.
- (3) If $x \in [e^{-e}, e^{1/e}]$, then $h_e(x) = h_o(x)$; and $h_e(e^{1/e}) = h_o(e^{1/e}) = e$.

As a consequence, the sequence $\{{}^nx\}$ converges if and only if $x \in [e^{-e},e^{1/e}]$. We denote the limit by h(x): If $x \in [e^{-e},e^{1/e}]$, then $h_e(x) = h_o(x) = h(x)$ and $x^{h(x)} = h(x)$. In particular, the function $h: [e^{-e},e^{1/e}] \to [e^{-1},e]$ is the inverse of the strictly increasing function $[e^{-1},e] \ni x \mapsto x^{1/x} \in [e^{-e},e^{1/e}]$. Therefore the properties of h can be derived from those of $x \mapsto x^{1/x}$. On the other hand, for $a \in (0,e^{-e})$ the functions h_e and h_o can be approximated by their Taylor polynomials in a neighborhood of a, because they are analytic at a. (The general properties of analytic functions that are needed in this paper can be found in [5, Chapter 2] and [6, Chapter 10].) Since $x^{x^{h_e(x)}} = h_e(x)$ and $x^{x^{h_o(x)}} = h_o(x)$, we can calculate, at least theoretically, the Taylor polynomials by implicit differentiations. It seems, however, few results are known about the behavior of h_e and h_o at the points e^{-e} and 0.

In this paper, we describe the asymptotic behavior of $h_e(x)$ and $h_o(x)$ for $x \to e^{-e}$ with $x < e^{-e}$ and for $x \to 0$ with x > 0: We shall use the Landau O- and o-notation. (For the definition, see [2, Chapter 1].) The main results are stated and explained in Section 2. In Section 3, we briefly state some basic properties of the functions h_e and h_o . Finally, in Sections 4 and 5, we prove the main results.

2. Main results

We start this section by explaining the speed of convergence of the sequences $\{^{2n}x\}$ and $\{^{2n+1}x\}$. For $n=0,1,2,\ldots$ we set $U_n(x)=$

 $^{2n+2}x - ^{2n}x$ and $V_n(x) = ^{2n+3}x - ^{2n+1}x$, so that

(2.1)
$$h_e(x) = {}^{2n}x + \sum_{k=n}^{\infty} U_k(x) \text{ and }$$

$$h_o(x) = {}^{2n+1}x + \sum_{k=n}^{\infty} V_k(x) \qquad (0 \le x \le e^{1/e})$$

for every n. In the next section, we will show that

(2.2)
$$\lim_{n \to \infty} \frac{U_n(x)}{U_{n-1}(x)} = \lim_{n \to \infty} \frac{V_n(x)}{V_{n-1}(x)} = \log h_e(x) \log h_o(x) \qquad (0 < x \le e^{1/e}, \ x \ne 1).$$

Since $h_e(e^{-e}) = h_o(e^{-e}) = e^{-1}$, we have $\log h_e(e^{-e}) \log h_o(e^{-e}) = 1$, and we will show that $\log h_e(x) \log h_o(x) \to 0$ as $x \to 0+$. (See Proposition 4.5.) This implies that the sequences $\{2^n x\}$ and $\{2^{n+1} x\}$ converge very slowly when x is near e^{-e} , but very fast when x is near 0.

To describe the behavior of h_e and h_o at e^{-e} , we represent them without using the sequences $\{^{2n}x\}$ and $\{^{2n+1}x\}$; and at 0, approximate them with the sequences. The following is proved in Section 4.

Theorem 2.1. There is a continuous and bijective function φ : $[-e^{-e/2},e^{-e/2}] \rightarrow [0,1]$ such that

- (1) φ is analytic in $(-e^{-e/2}, e^{-e/2})$,
- (2) $\varphi'(s) > 0 \text{ for } s \in (-e^{-e/2}, e^{-e/2}),$
- (3) $\varphi(0) = e^{-1}$,
- (4) $h_e(x) = \varphi(\sqrt{e^{-e} x})$ for $x \in [0, e^{-e}]$, and
- (5) $h_o(x) = \varphi(-\sqrt{e^{-e} x})$ for $x \in [0, e^{-e}]$.

For k = 0, 1, 2, ... we set $a_k = \varphi^{(k)}(0)/k!$. Since φ is analytic at 0, there is a positive constant δ such that $\sum_{k=0}^{\infty} a_k s^k$ converges absolutely to $\varphi(s)$ for every $s \in (-\delta, \delta)$. In particular, we obtain the following:

COROLLARY. Suppose n is a non-negative integer. Then, for $x \to e^{-e}$ with $x < e^{-e}$, the following hold:

$$h_e(x) = \sum_{k=0}^{n} a_k (e^{-e} - x)^{k/2} + O\left((e^{-e} - x)^{(n+1)/2}\right)$$
 and

$$h_o(x) = \sum_{k=0}^{n} (-1)^k a_k (e^{-e} - x)^{k/2} + O\left((e^{-e} - x)^{(n+1)/2}\right).$$

Since $\varphi(0) = e^{-1}$, we have $a_0 = e^{-1}$. To determine the coefficients a_1, a_2, \ldots , we put $t = e^{e/2}s$ and write

(2.3)
$$\varphi(s) = e^{-1} \left(1 + At \left(1 + \sum_{n=1}^{\infty} b_n t^n \right) \right),$$

so that $a_1 = e^{-1}Ae^{e/2}$ and $a_n = e^{-1}Ae^{ne/2}b_{n-1}$ for $n = 2, 3, \ldots$ The right-hand side converges absolutely for all t sufficiently close to 0. Since $h_e(x) \log x = \log h_o(x)$ and $h_o(x) \log x = \log h_e(x)$ for all $x \in (0, e^{-e}]$, Theorem 2.1 implies that

(2.4)
$$\varphi(-s)\log(e^{-e} - s^2) = \log \varphi(s)$$
 $(-e^{-e/2} < s < e^{-e/2}).$

In Section 4, we will show that an analytic function φ is uniquely determined by this equation and the condition that $\varphi'(0) > 0$. (See Proposition 4.6.) From (2.3) and (2.4),

$$e^{-1} \left(1 - At \left(1 + \sum_{n=1}^{\infty} (-1)^n b_n t^n \right) \right) \left(-e - \sum_{n=1}^{\infty} \frac{1}{n} t^{2n} \right)$$
$$= -1 + \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} A^m t^m \left(1 + \sum_{n=1}^{\infty} b_n t^n \right)^m$$

for all t sufficiently close to 0; and we have A>0, because $\varphi'(0)>0$. Hence, by comparing the coefficients of both sides of this equation, one can determine A,b_1,b_2,\ldots successively. For instance, $A=\sqrt{6/e},\,b_1=\frac{1}{6}A,\,b_2=\frac{1}{4}-\frac{57}{360}A^2,\,b_3=\frac{1}{12}A-\frac{2}{45}A^3,\,b_4=\frac{13}{96}-\frac{19}{160}A^2+\frac{16547}{604800}A^4$ and $b_5=\frac{1}{18}A-\frac{2}{45}A^3+\frac{134}{14175}A^5$. This result and the corollary to Theorem 2.1 describe the asymptotic behavior of $h_e(x)$ and $h_o(x)$ for $x\to e^{-e}$ with $x< e^{-e}$. For instance, we have

$$h_e(x) = e^{-1} + \sqrt{6}e^{(e-3)/2}\sqrt{e^{-e} - x} + O(e^{-e} - x)$$
 and
 $h_o(x) = e^{-1} - \sqrt{6}e^{(e-3)/2}\sqrt{e^{-e} - x} + O(e^{-e} - x)$.

REMARKS 2.1. (i) The result shows that the curves $y = h_e(x)$ and $y = h_o(x)$ have a vertical tangent at (e^{-e}, e^{-1}) , and hence h_e and h_o are not analytic at the point e^{-e} . (ii) It seems that $\sum_{k=1}^{\infty} |b_k| < \infty$. If it were true, we would have

$$h_e(x) = \sum_{k=0}^{\infty} a_k (e^{-e} - x)^{k/2}$$
 and
$$h_o(x) = \sum_{k=0}^{\infty} (-1)^k a_k (e^{-e} - x)^{k/2} \qquad (0 \le x \le e^{-e}),$$

and the series converge absolutely for every $x \in [0, e^{-e}]$. The authors do not know how to prove this.

To describe the behavior of h_e and h_o at 0, we introduce the polynomials P_0, P_1, P_2, \ldots and Q_0, Q_1, Q_2, \ldots that are defined inductively as follows: $P_0 = Q_0 = 1$, and

$$P_n(y) = \lim_{x \to 0} x^{-n} \left(\exp\left(\sum_{k=1}^n x^k y Q_{k-1}(y)\right) - \sum_{k=0}^{n-1} x^k P_k(y) \right),$$
$$Q_n(y) = \lim_{x \to 0} x^{-n} \left(\exp\left(\sum_{k=1}^n x^k y P_k(y)\right) - \sum_{k=0}^{n-1} x^k Q_k(y) \right).$$

In Section 5, we will prove that these polynomials are well defined, and that deg $P_n=2n-1$ and deg $Q_n=2n$ for $n\geq 1$. (See Lemma 5.1, (5.4), (5.5) and Proposition 5.2.) A direct calculation shows that $P_1(y)=y$, $Q_1(y)=y^2$, $P_2(y)=\frac{1}{2}y^2+y^3$, $Q_2(y)=\frac{1}{2}y^3+\frac{3}{2}y^4$, $P_3(y)=\frac{1}{6}y^3+\frac{3}{2}y^4+\frac{3}{2}y^5$, $Q_3(y)=\frac{1}{6}y^4+2y^5+\frac{8}{3}y^6$, and so on. In the same section, the following are proved:

PROPOSITION 2.2. Suppose n is a non-negative integer. Then, for $x \to 0+$, the following hold:

$$x^{2n}x = \sum_{k=0}^{n} x^k P_k(\log x) + O\left(x^{n+1}|\log x|^{2n+1}\right)$$
 and $x^{2n+1}x = x\sum_{k=0}^{n} x^k Q_k(\log x) + O\left(x^{n+2}|\log x|^{2n+2}\right)$.

PROPOSITION 2.3. For each $\epsilon > 0$ there is a $\delta > 0$ such that if $0 < x \le \delta$, then the inequalities

$$|h_e(x) - {}^{2n}x| \le (1+\epsilon)^{n+1}x^{n+1}|\log x|^{2n+1}$$

and

$$|h_o(x) - {}^{2n+1}x| \le (1+\epsilon)^{n+2}x^{n+2}|\log x|^{2n+2}$$

hold for all non-negative integers n.

As an immediate consequence of these propositions, we obtain the following:

THEOREM 2.4. Suppose n is a non-negative integer. Then, for $x \rightarrow 0+$, the following hold:

$$h_e(x) = \sum_{k=0}^n x^k P_k(\log x) + O\left(x^{n+1} |\log x|^{2n+1}\right) \quad \text{and}$$

$$h_o(x) = x \sum_{k=0}^n x^k Q_k(\log x) + O\left(x^{n+2} |\log x|^{2n+2}\right).$$

This theorem describes the asymptotic behavior of $h_e(x)$ and $h_o(x)$ for $x \to 0$ with x > 0. For instance, we have

(2.5)
$$h_e(x) = 1 + x \log x + O\left(x^2 |\log x|^3\right) \text{ and } h_o(x) = x + x^2 (\log x)^2 + O\left(x^3 |\log x|^4\right).$$

REMARKS 2.2. (i) The result shows that h_e and h_o cannot be extended to analytic functions in an open interval containing 0. (ii) The result also shows that the right-hand derivative of h_e at 0 does not exist, but that of h_o exists and is equal to 1. (iii) Theorem 2.4 gives no information about the convergence of the series

$$\sum_{k=0}^{\infty} x^k P_k(\log x) \quad \text{and} \quad \sum_{k=0}^{\infty} x^{k+1} Q_k(\log x).$$

It seems, however, that for every $x \in (0, e^{1/e}]$ these series converge to $h_e(x)$ and $h_o(x)$, respectively.

Finally, the following shows that h_o can be extended to a C^1 -function in an open interval containing 0, but not to a C^2 -one.

Proposition 2.5.
$$h_o'(x) \to 1$$
 and $x^{-1}(h_o'(x) - 1) \to \infty$ as $x \to 0+$.

This proposition also is proved in Section 5.

3. Preliminaries

In this short section, we state some basic properties of the functions h_e and h_o . First of all, it is easy to see that if $x \in [0, 1]$, then

$$^{2n+1}x < ^{2n+2}x < ^{2n}x$$
 and $^{2n+2}x > ^{2n+3}x \ge ^{2n+1}x$.

From this, it follows that $^{2n+1}x \leq h_o(x) \leq h_e(x) \leq ^{2n}x$ for all $x \in [0,1]$. On the other hand, it is not hard to see that if $x \in [0,e^{-e}]$, then $^{2n+1}x \leq e^{-1} \leq ^{2n}x$. (See [4, p. 242] and [7, p. 14].) Consequently,

$$^{2n+1}x \le h_o(x) \le e^{-1} \le h_e(x) \le ^{2n}x$$
 $(0 \le x \le e^{-e}, \ n = 0, 1, 2, \dots).$

In particular,

$$(3.1) 0 \le h_o(x) \le e^{-1} \le h_e(x) \le 1 (0 \le x \le e^{-e}).$$

Since $h_e(x) = x^{h_o(x)}$ and $h_o(x) = x^{h_e(x)}$ whenever the sequences converge, and since $h_e(x), h_o(x) > 0$ for $x \in (0, e^{1/e}]$, we have

(3.2)
$$h_e(x)^{1/h_o(x)} = h_o(x)^{1/h_e(x)} = x \qquad (0 < x \le e^{1/e}),$$

and hence

(3.3)
$$h_e(x)^{h_e(x)} = h_o(x)^{h_o(x)} \qquad (0 \le x \le e^{1/e}).$$

We close this section by proving (2.2).

Proof of (2.2). Suppose that $x \in (0, e^{1/e}] \setminus \{1\}$. Then the sequences $\{U_n(x)\}$ and $\{V_n(x)\}$ converge to zero. Since $U_n(x) = {}^{2n+2}x - {}^{2n}x = {}^{2n}x (\exp(V_{n-1}(x)\log x) - 1)$, this implies that

$$\lim_{n \to \infty} \frac{U_n(x)}{V_{n-1}(x)} = \lim_{n \to \infty} {2n \over n} x \frac{e^{V_{n-1}(x)\log x} - 1}{V_{n-1}(x)} = h_e(x)\log x = \log h_o(x).$$

Similarly,

$$\lim_{n \to \infty} \frac{V_n(x)}{U_n(x)} = \log h_e(x).$$

Now the result is obvious.

4. Proof of Theorem 2.1

In this section, the following lemma will play a basic role. The proof is trivial.

LEMMA 4.1. Let f be a real analytic function defined in an open interval (a,b), and suppose that $c \in (a,b)$, f(x) > 0 for $x \neq c$, f(c) = f'(c) = 0, and $f''(c) \neq 0$. If \tilde{f} is defined by

$$\tilde{f}(x) = \begin{cases} -\sqrt{f(x)} & (a < x < c), \\ \sqrt{f(x)} & (c \le x < b), \end{cases}$$

then \tilde{f} is analytic in (a,b) and $\tilde{f}'(c) = \sqrt{f''(c)/2}$.

Note that we must have f''(c) > 0.

We need to introduce some functions and establish their properties. Let the function $F:[0,1] \to [-\sqrt{1-e^{-1/e}}, \sqrt{1-e^{-1/e}}]$ be defined by

$$F(x) = \begin{cases} -\sqrt{x^x - e^{-1/e}} & (0 \le x \le e^{-1}), \\ \sqrt{x^x - e^{-1/e}} & (e^{-1} \le x \le 1). \end{cases}$$

This function is well defined, continuous and bijective; Lemma 4.1 implies that F is analytic in (0,1); and it is clear that F'(x) > 0 for all $x \in (0,1)$.

Let G denote the function

$$[0,1] \ni x \mapsto F^{-1}(-F(x)) \in [0,1].$$

Then G(0) = 1, $G(e^{-1}) = e^{-1}$, G(1) = 0, G is continuous in [0,1], analytic in (0,1), and we have G'(x) < 0 for $x \in (0,1)$. It is easy to see that G(G(x)) = x and $G(x)^{G(x)} = x^x$ for $x \in [0,1]$. From this, (3.1) and (3.3), we obtain

(4.1)
$$h_e(x) = G(h_o(x))$$
 and $h_o(x) = G(h_e(x))$ $(0 \le x \le e^{-e}),$

and

(4.2)
$$G(x) \log G(x) = x \log x$$
 $(0 < x < 1).$

Since $G(e^{-1}) = e^{-1}$, $G'(e^{-1}) < 0$ and G(G(x)) = x, we have $G'(e^{-1}) = -1$. In a neighborhood of e^{-1} , the analytic function G is represented by an absolutely convergent power series:

$$G(x) = \sum_{n=0}^{\infty} c_n (x - e^{-1})^n.$$

We have $c_0 = e^{-1}$ and $c_1 = -1$, because $G(e^{-1}) = e^{-1}$ and $G'(e^{-1}) = -1$. Hence, using (4.2), one can determine the coefficients c_2, c_3, \ldots successively. For instance, $c_2 = \frac{1}{3}e$, $c_3 = -\frac{1}{9}e^2$, $c_4 = \frac{17}{270}e^3$, and $c_5 = -\frac{31}{810}e^4$. Note that an analytic function $G: (0,1) \to \mathbb{R}$ is uniquely determined by (4.2) and the condition that $G'(e^{-1}) < 0$.

We can parameterize the curve y = G(x) as follows: Put $x^{-1}G(x) = t$. As x increases from 0 to 1, t decreases from ∞ to 0; and t = 1 if and only if $x = e^{-1}$. From (4.2) one can easily deduce that (4.3)

$$\log x = \frac{t}{1-t} \log t \quad \text{and} \quad \log G(x) = \frac{1}{1-t} \log t \qquad (0 < t < \infty, \ t \neq 1),$$

and this is equivalent to

$$x = t^{\frac{t}{1-t}}$$
 and $y = t^{\frac{1}{1-t}}$ $(0 < t < \infty, t \neq 1).$

We remark that an equivalent version of this parameterization is due to Goldbach. See [4, p. 237].

LEMMA 4.2. The function $x \mapsto \log x \log G(x)$ is strictly increasing in $(0, e^{-1})$, has maximum value 1 at $x = e^{-1}$, and is strictly decreasing in $(e^{-1}, 1)$; and

$$\lim_{x \to 0+} \log x \log G(x) = \lim_{x \to 1-} \log x \log G(x) = 0.$$

Proof. If we put $x^{-1}G(x) = t$, then t decreases from ∞ to 0 as x increases from 0 to 1, t = 1 if and only if $x = e^{-1}$, and (4.3) implies that

$$\log x \log G(x) = t \left(\frac{\log t}{t-1}\right)^2 \qquad (0 < t < \infty, \ t \neq 1).$$

Now, the result is proved by calculus.

Define H by

$$H(x) = \begin{cases} 0 & (x = 0), \\ G(x)^{1/x} & (0 < x \le 1). \end{cases}$$

This function is analytic in (0,1), continuous at 1, and H(1) = 0. Moreover, H is continuous at 0 too: Since $0 \le G(x) \le 1$ and $G(x)^{G(x)} = x^x$ for $x \in [0,1]$, we have

$$0 \le H(x)^x = G(x) \le G(x)^{G(x)} = x^x$$
 $(0 \le x \le 1),$

and hence

$$0 \le H(x) \le x \qquad (0 \le x \le 1).$$

PROPOSITION 4.3. If $x \in [0, e^{-e}]$, then $H(h_e(x)) = H(h_o(x)) = x$.

Proof. The result follows from (3.2), (4.1) and the definition of $H.\Box$

Proposition 4.4. H'(x) > 0 for $x \in (0, e^{-1})$, H'(x) < 0 for $x \in (e^{-1}, 1)$, $H(e^{-1}) = e^{-e}$, $H'(e^{-1}) = 0$, and $H''(e^{-1}) = -\frac{1}{3}e^{3-e}$.

Proof. First of all, the last three assertions are proved by straightforward calculation, because $G(e^{-1}) = e^{-1}$, $G'(e^{-1}) = -1$, $G''(e^{-1}) = 2c_2 = \frac{2}{3}e$, and $H(x) = G(x)^{1/x}$ for $x \in (0,1)$.

By differentiating both sides of (4.2), we obtain $G'(x)(1+\log G(x))=1+\log x$, which is valid for all $x\in(0,1)$. On the other hand, $\log H(x)=x^{-1}\log G(x)$ for $x\in(0,1)$. Hence, by straightforward calculation, we have

$$\frac{H'(x)}{H(x)} = \frac{-G(x)\log G(x) (1 + \log G(x)) + x(1 + \log x)}{x^2 G(x) (1 + \log G(x))}$$

$$(0 < x < 1, \ x \neq e^{-1}).$$

The right-hand side is simplified with the aid of (4.2):

(4.4)
$$\frac{H'(x)}{H(x)} = \frac{-x \log x (1 + \log G(x)) + x(1 + \log x)}{x^2 G(x) (1 + \log G(x))}$$
$$= \frac{1 - \log x \log G(x)}{x G(x) (1 + \log G(x))} \qquad (0 < x < 1, \ x \neq e^{-1}).$$

Lemma 4.2 implies that $1 - \log x \log G(x) > 0$ for all $x \in (0,1)$ with $x \neq e^{-1}$, and it is clear that xG(x) > 0 for all $x \in (0,1)$. From this, the first two assertions follow, because G is strictly decreasing and $\log G(e^{-1}) = -1$.

Now, we can prove Theorem 2.1.

Proof of Theorem 2.1. Let the function $\tilde{H}:[0,1]\to[-e^{-e/2},e^{-e/2}]$ be defined by

$$\tilde{H}(x) = \begin{cases} -\sqrt{e^{-e} - H(x)} & (0 \le x \le e^{-1}), \\ \sqrt{e^{-e} - H(x)} & (e^{-1} \le x \le 1). \end{cases}$$

From Lemma 4.1 and Proposition 4.4, we have the following: \tilde{H} is well defined, continuous, bijective, $\tilde{H}(e^{-1}) = 0$, \tilde{H} is analytic in (0,1) and

 $\tilde{H}'(x) > 0$ for all $x \in (0,1)$. Moreover (3.1), Proposition 4.3, and the definition of \tilde{H} imply that (4.5)

$$\tilde{H}(h_e(x)) = \sqrt{e^{-e} - x} \text{ and } \tilde{H}(h_o(x)) = -\sqrt{e^{-e} - x} \quad (0 \le x \le e^{-e}).$$

If we denote the inverse of \tilde{H} by φ , then φ is continuous in $[-e^{-e/2}, e^{-e/2}]$, analytic in $(-e^{-e/2}, e^{-e/2})$, $\varphi'(s) > 0$ for all $s \in (-e^{-e/2}, e^{-e/2})$, $\varphi(0) = e^{-1}$, and (4.5) is equivalent to

$$h_e(x) = \varphi(\sqrt{e^{-e} - x})$$
 and $h_o(x) = \varphi(-\sqrt{e^{-e} - x})$ $(0 \le x \le e^{-e}).$

This proves Theorem 2.1.

At this point, it should be remarked that (3.1) and (3.2) are the only properties of h_e and h_o that are used in our proof of Theorem 2.1: (3.3) is a consequence of (3.2).

It remains to prove the following two propositions.

Proposition 4.5. $\log h_e(x) \log h_o(x) \to 0$ as $x \to 0+$.

PROPOSITION 4.6. Let $\tilde{\varphi}: (-e^{-e/2}, e^{-e/2}) \to \mathbb{R}$ be an analytic function. Suppose that $\tilde{\varphi}'(0) > 0$ and

$$(4.6) \tilde{\varphi}(-s)\log(e^{-e} - s^2) = \log \tilde{\varphi}(s) (-e^{-e/2} < s < e^{-e/2}).$$

Then $\tilde{\varphi}(s) = \varphi(s)$ for all $s \in (-e^{-e/2}, e^{-e/2})$.

Proof of Proposition 4.5. Theorem 2.1 implies that h_e is continuous at 0. Hence $h_e(x) \to h_e(0) = 1$ as $x \to 0+$. From (4.1), we have $\log h_e(x) \log h_o(x) = \log h_e(x) \log G(h_e(x))$. Therefore the result follows from Lemma 4.2.

Proof of Proposition 4.6. First of all, (4.6) implies that $\tilde{\varphi}(0) = e^{-1}$. Since $\tilde{\varphi}'(0) > 0$, there is a positive real number a, with $a < e^{-e/2}$, such that $\tilde{\varphi}$ is increasing in the interval (-a,a). Since $0 < \tilde{\varphi}(0) = e^{-1} < 1$, we may assume, by taking a sufficiently small, that $0 < \tilde{\varphi}(-a) < e^{-1} < \tilde{\varphi}(a) < 1$.

For $x \in (e^{-e} - a^2, e^{-e}]$ define $\tilde{h}_e(x)$ and $\tilde{h}_o(x)$ by

$$\tilde{h}_e(x) = \tilde{\varphi}(\sqrt{e^{-e} - x})$$
 and $\tilde{h}_o(x) = \tilde{\varphi}(-\sqrt{e^{-e} - x})$.

Since $\tilde{\varphi}$ is increasing in (-a,a) and $0 < \tilde{\varphi}(-a) < \tilde{\varphi}(0) = e^{-1} < \tilde{\varphi}(a) < 1$, we have

$$0 < \tilde{h}_o(x) \le e^{-1} \le \tilde{h}_e(x) < 1$$
 $(e^{-e} - a^2 < x \le e^{-e}).$

Moreover, (4.6) implies that

$$\tilde{h}_e(x)^{1/\tilde{h}_o(x)} = \tilde{h}_o(x)^{1/\tilde{h}_e(x)} = x \qquad (e^{-e} - a^2 < x \le e^{-e}).$$

Hence essentially the same argument as the proof of Theorem 2.1 shows that

$$\tilde{h}_e(x) = \varphi(\sqrt{e^{-e} - x})$$
 and
$$\tilde{h}_o(x) = \varphi(-\sqrt{e^{-e} - x}) \qquad (e^{-e} - a^2 < x \le e^{-e}).$$

Therefore $\tilde{\varphi}(s) = \varphi(s)$ for all $s \in (-a, a)$. From this, we obtain the desired result.

5. Proofs of Propositions 2.2, 2.3 and 2.5

For $x, y \in \mathbb{R}$ we define $h_0(x, y), h_1(x, y), h_2(x, y), \ldots$ as follows: $h_0(x, y) = 1$, and

$$h_{2n+1}(x,y) = x \exp(y h_{2n}(x,y) - y),$$

 $h_{2n+2}(x,y) = \exp(y h_{2n+1}(x,y)).$

For instance, $h_1(x,y) = x$, $h_2(x,y) = 1 + xy + \frac{1}{2}x^2y^2 + \cdots$, and so on. It is clear that $^n x = h_n(x, \log x)$ for x > 0 and $n = 0, 1, 2, \ldots$

LEMMA 5.1. For each non-negative integer n there are polynomials $P_{(n,0)},\ldots,P_{(n,n)}$ and $Q_{(n,0)},\ldots,Q_{(n,n)}$, with $\deg P_{(n,k)}=\max\{0,2k-1\}$ and $\deg Q_{(n,k)}=2k$ for all k, such that

(5.1)
$$h_{2n}(x,y) = \sum_{k=0}^{n} x^k P_{(n,k)}(y) + O\left(x^{n+1}\right) \qquad (x \to 0)$$

and

(5.2)
$$h_{2n+1}(x,y) = x \sum_{k=0}^{n} x^k Q_{(n,k)}(y) + O\left(x^{n+2}\right) \qquad (x \to 0)$$

hold for each fixed y.

Proof. First of all, we set $P_{(n,0)} = Q_{(n,0)} = 1$ for all non-negative integers n: The lemma holds trivially when n = 0. For each positive integer n let P(n) denote the statement that there are polynomials $P_{(n,1)}, \ldots, P_{(n,n)}$, with $\deg P_{(n,k)} = 2k-1$ for all k, such that (5.1) holds for each fixed y; and Q(n) the statement that there are polynomials $Q_{(n,1)}, \ldots, Q_{(n,n)}$, with $\deg Q_{(n,k)} = 2k$ for all k, such that (5.2) holds for each fixed y. Since $h_2(x,y) = 1 + xy + \frac{1}{2}x^2y^2 + \cdots$, P(1) is obvious, with $P_{(1,1)}(y) = y$. Hence the lemma will follow once we show that P(n) implies Q(n) and Q(n) implies P(n+1).

Let n be arbitrary. Suppose that P(n) is true. For convenience, we set $\tilde{P}_{(n,k)}(y) = yP_{(n,k)}(y)$: It is clear that $\deg \tilde{P}_{(n,k)} = 2k$. For each fixed y we have

$$h_{2n+1}(x,y) = x \exp(yh_{2n}(x,y) - y)$$

$$= x \exp\left(\sum_{k=1}^{n} x^{k} \tilde{P}_{(n,k)}(y) + O(x^{n+1})\right)$$

$$= x \exp\left(\sum_{k=1}^{n} x^{k} \tilde{P}_{(n,k)}(y)\right) + O(x^{n+2}) \qquad (x \to 0).$$

Since deg $\tilde{P}_{(n,k)} = 2k$ for all k, it follows that (5.3)

$$\exp\left(\sum_{k=1}^{n} x^{k} \tilde{P}_{(n,k)}(y)\right) = 1 + \sum_{k=1}^{n} x^{k} Q_{(n,k)}(y) + O\left(x^{n+1}\right) \qquad (x \to 0)$$

for some polynomials $Q_{(n,1)}, \ldots, Q_{(n,n)}$, with $\deg Q_{(n,k)} = 2k$ for all k. From this, Q(n) follows. The statement that Q(n) implies P(n+1) is proved similarly.

For each non-negative integer n we set $P_n = P_{(n,n)}$ and $Q_n = Q_{(n,n)}$. Then (5.3) implies that

(5.4)
$$Q_n(y) = \lim_{x \to 0} x^{-n} \left(\exp\left(\sum_{k=1}^n x^k y P_{(n,k)}(y)\right) - \sum_{k=0}^{n-1} x^k Q_{(n,k)}(y) \right)$$

for every positive integer n; and similarly, (5.5)

$$P_n(y) = \lim_{x \to 0} x^{-n} \left(\exp\left(\sum_{k=1}^n x^k y Q_{(n-1,k-1)}(y)\right) - \sum_{k=0}^{n-1} x^k P_{(n,k)}(y) \right)$$

for every positive integer n.

PROPOSITION 5.2. Suppose $0 \le k < n$. Then $P_{(n,k)} = P_k$ and $Q_{(n,k)} = Q_k$.

To prove this proposition as well as Propositions 2.2, 2.3 and 2.5, we need some lemmas.

LEMMA 5.3. Suppose n is a non-negative integer. Then, for $x \to 0+$, the following hold:

$$^{2n}x = \sum_{k=0}^{n} x^k P_{(n,k)}(\log x) + O\left(x^{n+1} |\log x|^{2n+1}\right) \quad \text{and}$$

$$^{2n+1}x = x \sum_{k=0}^{n} x^k Q_{(n,k)}(\log x) + O\left(x^{n+2} |\log x|^{2n+2}\right).$$

Proof. The proof is essentially the same as Lemma 5.1.

LEMMA 5.4. For each non-negative integer n the following hold:

$$|U_n(x)| \le xh_o(x)^n |\log x|^{2n+1},$$

$$|V_n(x)| \le xh_o(x)^{n+1} |\log x|^{2n+2} \quad (0 < x < 1).$$

Proof. It is easy to see that the inequality

$$|a - b| \le \max\{a, b\} |\log a - \log b|$$

holds for all positive real numbers a and b. Let 0 < x < 1. Then the sequence $\{^{2n}x\}$ is decreasing and $\{^{2n+1}x\}$ increasing. Since $\{^{2n}x\}$ is decreasing, we have

$$|U_n(x)| = |^{2n+2}x - 2^n x|$$

$$\leq {^{2n}}x |\log({^{2n+2}}x) - \log({^{2n}}x)|$$

$$\leq {^{2n}}x |^{2n+1}x \log x - {^{2n-1}}x \log x|$$

$$= {^{2n}}x |\log x| |^{2n+1}x - {^{2n-1}}x|$$

$$= {^{2n}}x |\log x| |V_{n-1}(x)| \qquad (n = 1, 2, ...),$$

and it is clear that $|U_0(x)| \leq x|\log x|$. Similarly,

$$|V_n(x)| \le 2n+3x |\log x| |U_n(x)| \qquad (n = 0, 1, 2, ...).$$

Now, the result is proved by induction, because $^{2n}x \leq 1$ and $^{2n+1}x \leq h_o(x)$ for all n.

LEMMA 5.5. For each $\epsilon > 0$ there is a δ , with $0 < \delta \le e^{-e}$, such that if $0 \le x \le \delta$, then $h_o(x) \le (1 + \epsilon)x$.

Proof. From Propositions 4.3 and 4.4, the function $h_o: [0, e^{-e}] \to [0, e^{-1}]$ is the inverse of $H: [0, e^{-1}] \to [0, e^{-e}]$. Hence the assertion will follow once we prove that $x^{-1}H(x) \to 1$ as $x \to 0+$, and that $\frac{d}{dx}(x^{-1}H(x)) < 0$ for $x \in (0, e^{-1})$.

Since $G(x) \to 1$ as $x \to 0+$ and $x \log x = G(x) \log G(x)$ for $x \in (0,1)$, we have

$$\lim_{x \to 0+} \frac{1 - G(x)}{x \log x} = \lim_{x \to 0+} \frac{1 - G(x)}{G(x) \log G(x)} = \lim_{s \to 1} \frac{1 - s}{s \log s} = -1;$$

and since $H(x) = G(x)^{1/x} = x^{1/G(x)}$ for $x \in (0, 1)$,

$$\log x^{-1}H(x) = \log H(x) - \log x = \frac{1}{G(x)}\log x - \log x$$
$$= \frac{1}{G(x)}(1 - G(x))\log x = \frac{1}{G(x)}\frac{1 - G(x)}{x\log x}x(\log x)^{2}.$$

Thus $\log x^{-1}H(x) \to 0$ as $x \to 0+$, that is, $x^{-1}H(x) \to 1$ as $x \to 0+$. It remains to show that $\frac{d}{dx}(x^{-1}H(x)) < 0$ for $x \in (0, e^{-1})$. From (4.4), we have

$$\frac{d}{dx}\log x^{-1}H(x) = \frac{H'(x)}{H(x)} - \frac{1}{x}$$

$$= \frac{1 - \log x \log G(x) - G(x) (1 + \log G(x))}{xG(x) (1 + \log G(x))}.$$

Hence we need only to show that

$$(5.6) \quad G(x) \left(1 + \log G(x)\right) + \log x \log G(x) - 1 > 0 \qquad (0 < x < e^{-1}),$$

because $x^{-1}H(x) > 0$ and $xG(x)\left(1 + \log G(x)\right) > 0$ for $x \in (0, e^{-1})$.

Suppose that $0 < x < e^{-1}$. Since $e^s \ge 1 + s$ for all $s \in \mathbb{R}$, we have $G(x) (1 + \log G(x)) \ge (1 + \log G(x))^2$; and hence the left-hand side of (5.6) is greater than or equal to

$$(5.7) \qquad (1 + \log G(x))^2 + \log x \log G(x) - 1.$$

If we put $t = x^{-1}G(x)$, then t > 1; and (4.3) implies that (5.7) is equal to $(1-t)^{-2}(2-2t+\log t+t\log t)\log t$. From this, (5.6) follows, because $2-2t+\log t+t\log t>0$ for all t>1.

Now, we can prove Propositions 5.2, 2.2, 2.3 and 2.5.

Proof of Proposition 5.2. The proposition will follow once we show that for each non-negative integer n we have

$$P_{(n,k)} = P_{(n+1,k)}$$
 and $Q_{(n,k)} = Q_{(n+1,k)}$ $(k = 0, 1, ..., n)$.

Let n be arbitrary. For $k=0,1,\ldots,n$ we set $P_k^*=P_{(n+1,k)}-P_{(n,k)}$. Lemma 5.3 implies that

$$U_n(x) = {}^{2n+2}x - {}^{2n}x$$

$$= \sum_{k=0}^n x^k P_k^*(\log x) + x^{n+1} P_{(n+1,n+1)}(\log x) + O\left(x^{n+1}|\log x|^{2n+1}\right)$$

for $x \to 0+$. From Lemma 5.1, $\deg P_{(n+1,n+1)} = 2n+1$; and Lemmas 5.4 and 5.5 imply that $U_n(x) = O\left(x^{n+1}|\log x|^{2n+1}\right)$ for $x \to 0+$. Hence

$$\sum_{k=0}^{n} x^{k} P_{k}^{*}(\log x) = O\left(x^{n+1} |\log x|^{2n+1}\right) = o(x^{n}) \qquad (x \to 0+).$$

From this, we obtain $P_0^* = 0$, $P_1^* = 0, \ldots$, and $P_n^* = 0$ successively. Therefore $P_{(n,k)} = P_{(n+1,k)}$ for all k. The statement that $Q_{(n,k)} = Q_{(n+1,k)}$ for all k is proved similarly.

Proof of Proposition 2.2. The proposition is an immediate consequence of Proposition 5.2 and Lemma 5.3. \Box

Proof of Proposition 2.3. Let $\epsilon > 0$ be arbitrary. From Lemma 5.5, there is a $\delta > 0$ such that if $0 < x \le \delta$, then $h_o(x) \le (1 + \epsilon)x$. Suppose that $0 < x \le \delta$. By Lemma 5.4, the inequalities

$$|U_n(x)| \le (1+\epsilon)^n x^{n+1} |\log x|^{2n+1}$$
 and $|V_n(x)| \le (1+\epsilon)^{n+1} x^{n+2} |\log x|^{2n+2}$

hold for all non-negative integers n. Since $x(\log x)^2 \to 0$ as $x \to 0+$, we may assume, by replacing δ with a smaller one, that

$$(1 - (1 + \epsilon)x(\log x)^2)^{-1} \le 1 + \epsilon.$$

Hence the desired result follows from (2.1).

Proof of Proposition 2.5. From Proposition 4.3, $h'_o(x) = 1/H'(h_o(x))$ for $x \in (0, e^{-e})$. Hence we obtain, by (4.1) and (4.4),

(5.8)
$$h'_o(x) = \frac{h_o(x)h_e(x)\left(1 + \log h_e(x)\right)}{x\left(1 - \log h_o(x)\log h_e(x)\right)} \qquad (0 < x < e^{-e}).$$

Therefore $h'_o(x) \to 1$ as $x \to 0+$, by (2.5) and Proposition 4.5. It remains to show that $x^{-1}(h'_o(x)-1) \to \infty$ as $x \to 0+$. From (5.8),

$$\frac{h_o'(x) - 1}{x} = \frac{h_o(x)h_e(x)\left(1 + \log h_e(x)\right) - x\left(1 - \log h_o(x)\log h_e(x)\right)}{x^2\left(1 - \log h_o(x)\log h_e(x)\right)}$$

for $x \in (0, e^{-e})$; and (2.5) implies that

$$h_o(x)h_e(x) (1 + \log h_e(x)) - x (1 - \log h_o(x) \log h_e(x))$$

= $2x^2 ((\log x)^2 + \log x) + O(x^3 |\log x|^4)$

for $x \to 0+$. Hence the desired result follows from Proposition 4.5. \square

ACKNOWLEDGMENT. The authors thank Professor Haseo Ki for his help in the proof of Lemma 5.5.

References

- [1] I. N. Baker and P. J. Rippon, A note on complex iteration, Amer. Math. Monthly **92** (1985), 501–504.
- [2] N. G. de Bruijn, Asymptotic Methods in Analysis, Dover Publications, New York, 1981.
- [3] Y. Cho and K. Park, Inverse functions of $y = x^{1/x}$, Amer. Math. Monthly 108 (2001), 963–967.
- [4] R. A. Knoebel, Exponentials reiterated, Amer. Math. Monthly 88 (1981), 235–252.
- [5] S. Lang, Complex Analysis, Addison-Wesley, Reading, Massachusetts, 1977.
- [6] J. Lewin and M. Lewin, An Introduction to Mathematical Analysis 2nd ed., McGraw-Hill, Inc., New York, 1993.
- [7] J. M. De Villiers and P. N. Robinson, The interval of convergence and limiting functions of a hyperpower sequence, Amer. Math. Monthly 93 (1986), 13–23.

YUNHI CHO, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SEOUL, SEOUL 130-743, KOREA

E-mail: yhcho@uoscc.uos.ac.kr

Young-One Kim, Department of Mathematical Sciences, Seoul National University, Seoul 151-742, Korea

E-mail: kimyo@math.snu.ac.kr