ON CHOQUET INTEGRALS OF MEASURABLE FUZZY NUMBER-VALUED FUNCTIONS

LEECHAE JANG, TAEKYUN KIM, JONGDUEK JEON AND WONJU KIM

ABSTRACT. In this paper, we consider fuzzy number-valued functions and fuzzy number-valued Choquet integrals. And we also discuss positively homogeneous and monotonicity of Choquet integrals of fuzzy number-valued functions(simply, fuzzy number-valued Choquet integrals). Furthermore, we prove convergence theorems for fuzzy number-valued Choquet integrals.

1. Introduction

It is well-known that closed set-valued functions had been used repeatedly in [1, 2, 4, 20]. We studied closed set-valued Choquet integrals in [5, 6] and convergence theorems under some sufficient conditions in [7, 8], for examples; (i) convergence theorems for monotone convergent sequences of Choquet integrably bounded closed set-valued functions (see [7]), (ii) covergence theorems for the upper limit and the lower limit of a sequence of Choquet integrably bounded closed set-valued functions (see [8]).

In this paper, we consider fuzzy number-valued functions in [19]-[22] and will define Choquet integrals of fuzzy number-valued functions. But these concepts of fuzzy number-valued Choquet integrals are all based on the corresponding results of interval-valued Choquet integrals in [5]-[8]. We also discuss their properties which are positively homogeneous and monotonicity of fuzzy number-valued Choquet integrals. They will be used in the following applications: (1) Subjectively probability and expectation utility without additivity associated with fuzzy

Received May 28, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 28A45, 28A48, 28E10.

Key words and phrases: fuzzy measures, fuzzy number-valued Choquet integrals, Hausdorff metric.

events as in Choquet integrable fuzzy number-valued functions, (2) Capacity measure which are presented by comonotonically additive fuzzy number-valued functionals, and (3) Ambiguity measure related with fuzzy number-valued fuzzy inference.

In section 2, we consider interval number-valued functions and discuss some characterizations of interval number-valued Choquet integrals. In section 3, we define Choquet integrals of fuzzy number-valued functions and discuss their properties on a suitable class of fuzzy number-valued functions. In section 4, we will prove convergence theorems for fuzzy number-valued Choquet integrals.

2. Interval number-valued Choquet integrals

A fuzzy measure on a measurable space (X, A) is an extended real-valued function $\mu: A \longrightarrow [0, \infty]$ satisfying

- (i) $\mu(\emptyset) = 0$
- (ii) $\mu(A) \leq \mu(B)$, whenever $A, B \in \mathcal{A}, A \subset B$.

A fuzzy measure μ is said to be autocontinuous from above [resp., below] if $\mu(A \cup B_n) \to \mu(A)$ [resp., $\mu(A \sim B_n) \to \mu(A)$] whenever $A \in \mathcal{A}$, $\{B_n\} \subset \mathcal{A}$ and $\mu(B_n) \to 0$. If μ is autocontinuous both from above and from below, it is said to be autocontinuous (see [8, 13]).

DEFINITION 2.1. ([3, 10, 11, 12, 13]) (1) The Choquet integral of a measurable function f with respect to a fuzzy measure μ is defined by

$$(C)\int fd\mu=\int_0^\infty \mu_f(r)dr$$

where $\mu_f(r) = \mu(\{x|f(x) > r\})$ and the integral on the right-hand side is an ordinary one.

(2) A measurable function f is called integrable if the Choquet integral of f can be defined and its value is finite.

Throughout this paper, R^+ will denote the interval $[0, \infty)$, $I(R^+) = \{[a,b] \mid a,b \in R^+ \text{ and } a \leq b\}$. Then an element in $I(R^+)$ is called an interval number. On the interval number set, we define; for each pair $[a,b],[c,d] \in I(R^+)$ and $k \in R^+$,

Then $(I(R^+), d_H)$ is a metric space, where d_H is the Hausdorff metric defined by

$$d_H(A, B) = \max\{\sup_{x \in A} \inf_{y \in B} |x - y|, \sup_{y \in B} \inf_{x \in A} |x - y|\}$$

for all $A, B \in I(\mathbb{R}^+)$. By the definition of the Hausdorff metric, it is easily to show that for each pair $[a, b], [c, d] \in I(\mathbb{R}^+)$,

$$d_H([a,b],[c,d]) = \max\{|a-c|,|b-d|\}.$$

We note that \leq is called an order of interval numbers and that $[a, b] \subset [c, d]$ means [a, b] is a subset of [c, d].

A fuzzy number is a fuzzy set u on R^+ , satisfying the following conditions(see [18, 20, 21, 22]);

- (i) (normality) u(x) = 0 for some, $x \in \mathbb{R}^+$,
- (ii) (fuzzy convexity) for every $\lambda \in (0,1]$, $[u]^{\lambda} = \{x \in R^+ | u(x) \ge \lambda\} \in I(R^+)$, and
- (iii) $[u]^0 = \{x \in R^+ | u(x) > 0\} \in I(R^+)$.

Let $F(R^+)$ denote the set of fuzzy numbers. We define (see [18, 21, 22]); for each pair $u, v \in F(R^+)$ and $k \in R^+$,

$$\begin{split} &[u+v]^{\lambda}=[u]^{\lambda}+[v]^{\lambda},\\ &[ku]^{\lambda}=k[u]^{\lambda},\\ &u\leq v \text{ if and only if } [u]^{\lambda}\leq [v]^{\lambda} \text{ for all } \lambda\in[0,1],\\ &u< v \text{ if and only if } u\leq v \text{ and } u\neq v,\\ &u\subset v \text{ if and only if } [u]^{\lambda}\subset [v]^{\lambda} \text{ for all } \lambda\in[0,1].\\ &D\ :\ F(R^+)\times F(R^+)\ \to\ [0,\infty] \text{ on } F(R^+) \text{ by} \end{split}$$

$$D(u, v) = \sup\{d_H([u]^{\lambda}, [v]^{\lambda}) | \lambda \in (0, 1]\}.$$

Let $C(R^+)$ be the class of closed subsets of R^+ . Throughout this paper, we consider a closed set-valued function $F: X \to C(R^+) \setminus \{\emptyset\}$ and an interval number-valued function $F: X \to I(R^+) \setminus \{\emptyset\}$. We denote that $d_H - \lim_{n \to \infty} A_n = A$ if and only if $\lim_{n \to \infty} d_H(A_n, A) = 0$, where $A \in I(R^+)$ and $\{A_n\} \subset I(R^+)$. We also denote that $D - \lim_{n \to \infty} A_n = A$ if and only if $D - \lim_{n \to \infty} D(u_n, u) = 0$, where $u \in F(R^+)$ and $\{u_n\} \subset F(R^+)$.

DEFINITION 2.3. ([1, 2]) A closed set-valued function F is said to be measurable if for each open set $O \subset \mathbb{R}^+$,

$$F^{-1}(O) = \{ x \in X | F(x) \cap O \neq \emptyset \} \in \mathcal{A}.$$

DEFINITION 2.4. ([1, 2]) Let F be a closed set-valued function. A measurable function $f: X \to R^+$ satisfying

$$f(x) \in F(x)$$
 for all $x \in X$

is called a measurable selection of F.

We say $f: X \to R^+$ is in $L^1_c(\mu)$ if and only if f is measurable and $(C) \int f d\mu < \infty$. We note that " $x \in X \ \mu - a.e.$ " stands for " $x \in X \ \mu$ -almost everywhere". The property p(x) holds for $x \in X \ \mu - a.e.$ means that there is a measurable set A such that $\mu(A) = 0$ and the property p(x) holds for all $x \in A^c$, where A^c is the complement of A.

DEFINITION 2.5. ([10]-[13]) Let f,g be measurable nonnegative functions. We say that f and g are comonotonic, in symbols $f \sim g$ if and only if

$$f(x) < f(x') \implies g(x) \le g(x') \text{ for all } x, x' \in X.$$

Theorem 2.6. ([10]-[13]) Let f, g, h be measurable functions. Then we have

- (1) $f \sim f$,
- (2) $f \sim g \Longrightarrow g \sim f$,
- (3) $f \sim a$ for all $a \in R^+$
- (4) $f \sim g$ and $f \sim h \Longrightarrow f \sim (g+h)$.

Theorem 2.7. ([10]-[13]) Let f,g be nonnegative measurable functions.

- (1) If $f \leq g$, then $(C) \int f d\mu \leq (C) \int g d\mu$.
- (2) If $f \sim g$ and $a, b \in \mathbb{R}^+$, then

$$(C)\int (af+bg)d\mu=a(C)\int fd\mu+b(C)\int gd\mu.$$

DEFINITION 2.8. ([5]-[8]) (1) Let F be a closed set-valued function and $A \in \mathcal{A}$. The Choquet integral of F on A is defined by

$$(C) \int_{A} F d\mu = \{ (C) \int_{A} f d\mu | f \in S_{c}(F) \}$$

where $S_c(F)$ is the family of $\mu - a.e.$ Choquet integrable selections of F, that is,

$$S_c(F) = \{ f \in L_c^1(\mu) | f(x) \in F(x) | x \in X | \mu - a.e. \}.$$

(2) A closed set-valued function F is said to be Choquet integrable if $(C) \int F d\mu \neq \emptyset$.

(3) A closed set-valued function F is said to be Choquet integrably bounded if there is a function $g \in L^1_c(\mu)$ such that

$$||F(x)|| = \sup_{r \in F(x)} |r| \le g(x)$$
 for all $x \in X$.

Instead of $(C) \int_X F d\mu$, we will write $(C) \int F d\mu$. Let us discuss some properties of interval-valued Choquet integrals which mean Choquet integrals of measurable interval number-valued functions.

ASSUMPTION (A). For each pair $f, g \in S_c(F)$, there exists $h \in S_c(F)$ such that $f \sim h$ and $(C) \int g d\mu = (C) \int h d\mu$.

We consider the following classes of interval number-valued functions (see [8]);

$$\Im = \{F | F : X \longrightarrow I(R^+) \text{ is measurable and Choquet integrably} bounded}\}$$

and

$$\Im_1 = \{ F \in \Im | F \text{ satisfies the assumption(A)} \}.$$

EXAMPLE 2.9. We will take an example of the class \Im_1 . Let m be the Lebesgue measure on X=[0,1] and $\mu=m^2$. It is easily to show that μ is a fuzzy measure. We define a set-valued function $F:X\longrightarrow C(R^+)$ by F(x)=[0,1] for every $x\in X$. Then, it is easily to show that $F:X\longrightarrow C(R^+)$ is measurable, Choquet integrably bounded, and convex. Furthermore, for each $f,g\in S_c(F)$, we can put $d=(C)\int gd\mu$. If we define a function $h:X\longrightarrow R^+$ by h(x)=d for every $x\in X$, then $h\in S_c(F)$ and $(C)\int hd\mu=d=(C)\int gd\mu$. We also have $f\sim h$. Thus, the set-valued function F satisfied the Assumption (A). That is, $F\in\Im_1$.

THEOREM 2.10. (([5], Proposition 3.3) and ([8], Theorem 3.3)) If $F \in \mathfrak{I}_1$, then we have

- (1) $cF \in \Im_1$ for all $c \in R^+$,
- (2) $F \leq G \implies (C) \int F d\mu \leq (C) \int G d\mu$,
- (3) $A \subset B(A, B \in \mathcal{A}) \implies (C) \int_{\mathcal{A}} F d\mu \subset (C) \int_{\mathcal{B}} F d\mu$,
- $(4) A \leq B(A, B \in \mathcal{A}) \implies (C) \int_A F d\mu \leq (C) \int_B F d\mu,$
- (5) $(C) \int F d\mu = [(C) \int f_* d\mu, (C) \int f^* d\mu],$ where $f^*(x) = \sup\{r | r \in F(x)\}$ and $f_*(x) = \inf\{r | r \in F(x)\}.$

In the paper [8], we proved that f^* , f_* are Choquet integrable selections of F. Now, we consider a function Δ_S on \mathcal{F}_1 defined by

$$\triangle_S(F,G) = \sup_{x \in X} d_H(F(x), G(x))$$

for all $F, G \in \mathcal{F}_1$. Then, it is easily to show that Δ_S is a metric on \mathcal{F}_1 .

DEFINITION 2.11. Let $F \in \Im_1$. A sequence $\{F_n\} \subset \Im_1$ converges to F in the metric Δ_S , in symbols, $F_n \to_{\Delta_S} F$ if

$$\lim_{n\to\infty} \Delta_S(F_n, F) = 0.$$

THEOREM 2.12. ([8], Theorem 3.5) Let $F, G, H \in \mathfrak{I}_1$ and $\{F_n\}$ be a sequence in \mathfrak{I}_1 . If a fuzzy measure μ is autocontinuous and if $F_n \to_{\triangle_S} F$ and $G \leq F_n \leq H$, then we have

$$d_H - \lim_{n \to \infty} (C) \int F_n d\mu = (C) \int F d\mu.$$

3. Fuzzy number-valued Choquet integrals

In this section, we will define various concepts associated with fuzzy number-valued Choquet integral which is the Choquet integral of a fuzzy number-valued function.

DEFINITION 3.1. (1) A fuzzy number-valued function F is said to be measurable if for each $\lambda \in [0,1]$, the interval number-valued function $F^{\lambda}: X \longrightarrow F(R^{+}) \setminus \{\emptyset\}$, defined by $F^{\lambda}(x) = [F(x)]^{\lambda}$ is measurable.

(2) F is called Choquet integrably bounded if F^0 is Choquet integrably bounded.

DEFINITION 3.2. (1) Let F be a fuzzy number-valued function and $A \in \mathcal{A}$. The Choquet integral of F on A is defined by for each $\lambda \in [0, 1]$,

$$\begin{split} [(C)\int_A F d\mu]^\lambda &=& (C)\int_A F^\lambda d\mu \\ &=& \bigg\{(C)\int_A f d\mu | f \in S_c(F^\lambda)\bigg\}. \end{split}$$

(2) If there exists $u \in F(R^+)$ such that $[u]^{\lambda} = \int_A F^{\lambda} d\mu$, $\lambda \in [0, 1]$, then F is called Choquet integrable on A. Write $u = (C) \int_A F d\mu$.

Lemma 3.3. ([18], Lemma 2.1) If $\{[a^{\lambda},b^{\lambda}]|\lambda\in[0,1]\}$ is a given family of nonempty interval numbers of . If (1) for all $0\leq\lambda_1\leq\lambda_2,\ [a^{\lambda_1},b^{\lambda_1}]\supset[a^{\lambda_2},b^{\lambda_2}]$ and (2) for any nonincreasing sequence $\{\lambda_k\}$ in [0,1] in converging to $\lambda,\ [a^{\lambda},b^{\lambda}]=\cap_{k=1}^{\infty}[a^{\lambda_k},b^{\lambda_k}]$. Then there exists a unique fuzzy number $u\in F(R^+)$ such that the family $[a^{\lambda},b^{\lambda}]$ represents the λ -level sets of u.

Conversely, if $[a^{\lambda}, b^{\lambda}]$ are the λ -level sets of a fuzzy number $u \in F(R^+)$, then the conditions (1) and (2) are satisfied.

We denote the following classes of fuzzy number-valued functions:

$$\bar{\Im} = \{ F : X \to F(R^+) \mid F^{\lambda} \in \Im, \lambda \in [0, 1] \}$$

and

$$\bar{\mathfrak{F}}_1 = \{ F \in \bar{\mathfrak{F}} \mid F^{\lambda} \in \mathfrak{F}_1, \lambda \in [0, 1] \}.$$

THEOREM 3.4. If $F: X \longrightarrow F(R^+)$ is measurable and Choquet integrably bounded, $F \in \bar{\Im}$.

Proof. By measurability of F, $F^{\lambda}: X \longrightarrow I(R^{+})$ is measurable. Since F is Choquet integrably bounded, F^{0} is Choquet integrably bounded. Thus there exists $h \in L^{1}_{c}(\mu)$ such that

$$||F^0(x)|| \le h(x), \ \forall x \in X.$$

We note that $[F(x)]^{\lambda} \subset [F(x)]^0$ for all $\lambda \in [0,1]$. So, we have

$$||F^{\lambda}(x)|| \le h(x), \ \forall x \in X.$$

That is, F^{λ} is Choquet integrably bounded for all $\lambda \in [0,1]$. Thus we have $F^{\lambda} \in \Im$ and hence $F \in \bar{\Im}$.

THEOREM 3.5. Let $F \in \overline{\mathbb{S}}_1$ and $F^{\lambda*}(x) = \sup\{r | r \in F^{\lambda}(x)\}$ and $f_*^{\lambda}(x) = \inf\{r | r \in F^{\lambda}(x)\}$ for all $x \in X$. If we denote

$$u^{\lambda} = [(C) \int f_*^{\lambda} d\mu, (C) \int f^{\lambda*} d\mu] \text{ for all } \lambda \in [0, 1],$$

then we have

- (1) for all λ_1, λ_2 with $0 \le \lambda_1 \le \lambda_2, u^{\lambda_1} \supset u^{\lambda_2}$ and
- (2) for any nondecreasing sequence $\{\lambda_k\}$ in [0,1] converging to λ , $u^{\lambda} = \bigcap_{k=1}^{\infty} u^{\lambda_k}$.

Proof. (1) Let λ_1, λ_2 with $0 \le \lambda_1 \le \lambda_2$. Since $F^{\lambda_1}(x) \supset F^{\lambda_2}(x)$ for all $x \in X$, $f_*^{\lambda_1}(x) \le f_*^{\lambda_2}(x)$ and $f^{\lambda_1*}(x) \ge f^{\lambda_2*}(x)$ for all $x \in X$. By Theorem 2.7 (1),

$$(C) \int f_*^{\lambda_1} d\mu \le (C) \int f_*^{\lambda_2} d\mu \text{ and } (C) \int f^{\lambda_1 *} d\mu \ge (C) \int f^{\lambda_2 *} d\mu.$$

Thus we have

$$u^{\lambda_1} = [(C) \int f_*^{\lambda_1} d\mu, (C) \int f^{\lambda_1 *} d\mu]$$

$$\supset [(C) \int f_*^{\lambda_2} d\mu, (C) \int f^{\lambda_2 *} d\mu] = u^{\lambda_2}.$$

102

(2) Let $\{\lambda_k\}$ be any nonincreasing sequence in [0, 1] converging to λ . So, we have $f^{\lambda_k*} \setminus f^{\lambda*}$ and $f_*^{\lambda_k} \nearrow f_*^{\lambda}$. Thus, by Proposition 3.2 [10],

$$\lim_{k \to \infty} (C) \int f^{\lambda_k *} d\mu = (C) \int f^{\lambda_*} \text{ and } \lim_{k \to \infty} (C) \int f_*^{\lambda_k} d\mu = (C) \int f_*^{\lambda} d\mu.$$

Therefore, we have

$$\begin{split} \cap_{k=1}^{\infty} u^{\lambda_k} &= \bigcap_{k=1}^{\infty} [(C) \int f_*^{\lambda_k} d\mu, (C) \int f^{\lambda_k *} d\mu] \\ &= [\sup_k(C) \int f_*^{\lambda_k} d\mu, \inf_k(C) \int f^{\lambda_k *} d\mu] \\ &= [\lim_{k \to \infty} (C) \int f_*^{\lambda_k} d\mu, \lim_{k \to \infty} (C) \int f^{\lambda_k *} d\mu] \\ &= [(C) \int f_*^{\lambda} d\mu, (C) \int f^{\lambda *} d\mu] \\ &= u^{\lambda}. \end{split}$$

COROLLARY 3.6. If $F \in \overline{\mathbb{S}}_1$, then there exists a unique fuzzy number $u \in F(\mathbb{R}^+)$ such that

$$u^{\lambda} = (C) \int F^{\lambda} d\mu$$
 for all $\lambda \in [0, 1]$.

Proof. Theorem 3.5 implies that assumptions (1) and (2) of Lemma 3.3 hold. Thus by Lemma 3.3, there exists a unique fuzzy number $u \in F(R^+)$ such that the family $(C) \int F^{\lambda} d\mu$ represents the λ -level sets of u, that is,

$$u^{\lambda} = [(C) \int F d\mu]^{\lambda} = (C) \int F^{\lambda} d\mu.$$

We remark that for all $F \in \mathfrak{F}_1$, F is Choquet integrable and that $F \leq G$ if and only if $F(x) \leq G(x)$ for all $x \in X$ (see [22]).

THEOREM 3.7. (1) If $F \in \overline{\Im}_1$ and $c \in \mathbb{R}^+$, then $cF \in \overline{\Im}_1$ and

$$(C) \int cFd\mu = c(C) \int Fd\mu.$$

- (2) If $F, G \in \tilde{\mathfrak{F}}_1$ and $F \leq G$, then $(C) \int F d\mu \leq (C) \int G d\mu$.
- (3) If $F \in \overline{\mathbb{S}}_1$ and $A \leq B(A, B \in \mathcal{A})$, then $(C) \int_A F d\mu \leq (C) \int_B F d\mu$.
- (4) If $F \in \bar{\mathfrak{F}}_1$ and $A \subset B(A, B \in \mathcal{A})$, then $(C) \int_A F d\mu \subset (C) \int_B F d\mu$.

Proof. (1) It is easily to show that $cF \in \overline{\mathfrak{I}}_1$. Theorems 2.7(2) and 2.10(5) imply that for each $\lambda \in [0,1]$,

$$[(C) \int cFd\mu]^{\lambda} = (C) \int (cF)^{\lambda} d\mu$$

$$= (C) \int cF^{\lambda} d\mu$$

$$= [(C) \int cf_{*}^{\lambda} d\mu, (C) \int cf^{\lambda*} d\mu]$$

$$= c[(C) \int f_{*}^{\lambda} d\mu, (C) \int f^{\lambda*} d\mu]$$

$$= c[(C) \int F^{\lambda} d\mu]$$

$$= c[(C) \int Fd\mu]^{\lambda}.$$

Thus we have $(C) \int cF d\mu = c(C) \int F d\mu$.

(2) Since $F \leq G$, $F^{\lambda} \leq G^{\lambda}$ for all $\lambda \in [0,1]$. By Theorem 2.10(2),

$$[(C) \int F d\mu]^{\lambda} = (C) \int F^{\lambda} d\mu$$

$$\leq (C) \int G^{\lambda} d\mu$$

$$= [(C) \int G d\mu]^{\lambda}$$

for all $\lambda \in [0,1]$. Therefore, $(C) \int F d\mu \leq (C) \int G d\mu$.

(3) By Theorem 2.10(3) and (4), we have

$$\begin{split} [(C)\int_A F d\mu]^\lambda &= (C)\int_A F^\lambda d\mu \\ &\leq (C)\int_B F^\lambda d\mu \\ &= [(C)\int_B F d\mu]^\lambda, \end{split}$$

and

$$\begin{split} [(C)\int_A F d\mu]^\lambda &= (C)\int_A F^\lambda d\mu \\ &\subset (C)\int_B F^\lambda d\mu \end{split}$$

$$= [(C) \int_B F d\mu]^{\lambda},$$

for all $\lambda \in [0, 1]$.

4. The convergence theorem for fuzzy number-valued Choquet integrals

In this section, our aim is to prove the convergence theorem for fuzzy number-valued Choquet integrals. To this end, we introduce a metric in $F(R^+)$ (see [9, 15, 16]) and define a metric in $\bar{\Im}_1$.

Let $u, v \in F(R^+)$, and set

$$D(u,v) = \sup_{\lambda \in (0,1]} d_H(u^{\lambda}, v^{\lambda}).$$

Then, by Proposition 4.1 ([15]), we have $(F(R^+), D)$ is a metric space. Using this definition, clearly, we can define a metric D_S in $\overline{\Im}_1$.

Definition 4.1. A function $D_S: \bar{\mathfrak{S}_1} \times \bar{\mathfrak{S}_1} \to [0,\infty]$ is defined by

$$D_S(F,G) = \sup_{x \in X} D(F(x), G(x)),$$

for all $F, G \in \overline{\mathfrak{F}}_1$.

Then we have a relation between D_S and Δ_S .

THEOREM 4.2 Let $F, G \in \widehat{\mathfrak{I}}_1$, and D_S and Δ_S be as in the above. Then we have

$$D_S(F,G) = \sup_{\lambda \in (0,1]} \triangle_S(F^\lambda, G^\lambda).$$

Proof.

$$D_{S}(F,G) = \sup_{x \in X} D(F(x), G(x))$$

$$= \sup_{x \in X} \sup_{\lambda \in (0,1]} d_{H}(F^{\lambda}(x), G^{\lambda}(x))$$

$$= \sup_{\lambda \in (0,1]} \sup_{x \in X} d_{H}(F^{\lambda}(x), G^{\lambda}(x))$$

$$= \sup_{\lambda \in (0,1]} \Delta_{S}(F^{\lambda}, G^{\lambda}).$$

DEFINITION 4.3. Let $F \in \overline{\Im}_1$. A sequence $\{F_n\} \subset \overline{\Im}_1$ converges to F in the metric D_S , in symbols $F_n \to_{D_S} F$ if

$$\lim_{n\to\infty} D_S(F_n, F) = 0.$$

Using Theorem 4.2 and Definition 4.3, we obtain the following convergence theorem for fuzzy number-valued functions.

THEOREM 4.4. Let $F, G, H \in \overline{\mathfrak{I}}_1$ and $\{F_n\}$ be a sequence in $\overline{\mathfrak{I}}_1$. If a fuzzy measure μ is autocontinuous and if $F_n \to_{D_S} F$ and $G \leq F_n \leq H$, then we have

$$D - \lim_{n \to \infty} (C) \int F_n d\mu = (C) \int F d\mu.$$

Proof. Since $F_n \to_{D_S} F$ and $G \leq F_n \leq H$, $F_n^{\lambda} \to_{\triangle_S} F^{\lambda}$ and $G^{\lambda} \leq F_n^{\lambda} \leq H^{\lambda}$ for all $\lambda \in ((0,1]]$. By Theorem 2.12,

$$\lim_{n\to\infty} d_H((C) \int F_n{}^{\lambda} d\mu, (C) \int F^{\lambda} d\mu) = 0.$$

Thus, if $\varepsilon > 0$ is fixed, then there exists a natural number N_0 such that

$$d_H((C)\int F_n^{\lambda}d\mu,(C)\int F^{\lambda}d\mu)<\varepsilon,$$

for all $n \geq N_0$ and for all $\lambda \in (0, 1]$. Thus,

$$\begin{split} &D((C)\int F_n{}^\lambda d\mu, (C)\int F^\lambda d\mu)\\ &=\sup_{\lambda\in(0,1]} d_H((C)\int F_n{}^\lambda d\mu, (C)\int F^\lambda d\mu)\\ &<\varepsilon. \end{split}$$

for all $n \geq N_0$. Therefore, the proof is complete.

ACKNOWLEDGEMENT. This work was supported by Korea Research Foundation Grant (KRF-2002-041- C00011). The authors are grateful to the referees of KMS for their valuable suggestions and comments.

References

- [1] J. Aubin, Set-valued analysis, Birkauser Boston, 1990.
- [2] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12.
- [3] L. M. Campos and M. J. Bolauos, Characterization and comparison of Sugeno and Choquet integrals, Fuzzy Sets and Systems 52 (1992), 61–67.
- [4] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149–182.

- [5] L. C. Jang, B. M. Kil, Y. K. Kim and J. S. Kwon, Some properties of Choquet integrals of set-valued functions, Fuzzy Sets and Systems 91 (1997), 95–98.
- [6] L. C. Jang and J. S. Kwon, On the representation of Choquet integrals of setvalued functions and null sets, Fuzzy Sets and Systems 112 (2000), 233–239.
- [7] L. C. Jang and T. Kim, On set-valued Chaquet integrals and convergence theorems, Adv. Stud. Contemp. Math. 6(1) (2003), 63-76.
- [8] L. C. Jang, T. Kim and J. D. Jeon, On set-valued Choquet integrals and convergence theorems (II), Bull. Korean Math. Soc. 40 (2003), no. 1, 139-147.
- [9] V. Kratschmer, Limit theorems for fuzzy-random variables, Fuzzy Sets and Systems 126 (2002), 253–263.
- [10] T. Murofushi and M. Sugeno, An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems 29 (1989), 201–227.
- [11] _____, A theory of Fuzzy measures: representations, the Choquet integral, and null sets, J. Math. Anal. and Appl. 159 (1991), 532-549.
- [12] Y. Narukawa, T.Murofushi and M. Sugeno, Regular fuzzy measure and representation of comonotonically additive functional, Fuzzy Sets and Systems 112 (2000), 177–186.
- [13] ______, Extension and representation of comonotonically additive functionals, Fuzzy Sets and Systems, 121 (2001), 217–226.
- [14] S. Ovchinnikov and A. Dukhovny, On order invariant aggregation functionals, J. Mathe. Psych. 46 (2002), 12–18.
- [15] M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. of Math. Anal. and Appl. 114 (1986), 409–422.
- [16] H. Roman-Flores, The compactness of E(X), Appl. Math. Lett. 11(2) (1998), 13-17.
- [17] D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. 97 (1986), 255–261.
- [18] M. Sugeno, Y. Narukawa and T. Murofushi, Choquet integral and fuzzy measures on locally compact space, Fuzzy Sets and Systems 99 (1998), 205–211.
- [19] Y. Syau, On convex and concave fuzzy mappings, Fuzzy Sets and Systems 103 (1999), 163-168.
- [20] G. Wang and X. Li, The applications of interval-valued fuzzy number-distribution numbers, Fuzzy Sets and Systems 98 (1998), 331–335.
- [21] C. Wu, D. Zhang, B. Zhang, and C. Guo, Fuzzy number fuzzy measures and fuzzy integrals(I). Fuzzy integrals of functions with respect to fuzzy measures, Fuzzy Sets and Systems 98 (1998), 355–360.
- [22] D. Zhang, On measurability of fuzzy number-valued functions, Fuzzy Sets and Systems 120 (2001), 505–509.

LEECHAE JANG, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, KONKUK UNIVERSITY, CHUNGBUK 380-701, KOREA

E-mail: leechae.jang@kku.ac.kr

TaeKyun Kim, Institute of Science Education, Kongju National University, Kongju 314-701, Korea

E-mail: taekyun64@hotmail.com

Jong Duek Jeon and Won Ju Kim, Department of Mathematics, Kyunghee University, Seoul 130-701, Korea E-mail: jdjeon@nms.kyunghee.ac.kr