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ON CHOQUET INTEGRALS OF MEASURABLE
FUZZY NUMBER-VALUED FUNCTIONS

LEECHAE JANG, TAEKYUN KiM,
JoNGDUEK JEON AND WoONJU KiMm

ABSTRACT. In this paper, we consider fuzzy number-valued func-
tions and fuzzy number-valued Choquet integrals. And we also
discuss positively homogeneous and monotonicity of Choquet inte-
grals of fuzzy number-valued functions(simply, fuzzy number-valued
Choquet integrals). Furthermore, we prove convergence theorems
for fuzzy number-valued Choquet integrals.

1. Introduction

It is well-known that closed set-valued functions had been used re-
peatedly in [1, 2, 4, 20]. We studied closed set-valued Choquet integrals
in [5, 6] and convergence theorems under some sufficient conditions in
[7, 8], for examples ; (i) convergence theorems for monotone convergent
sequences of Choquet integrably bounded closed set-valued functions(see
[7]), (ii) covergence theorems for the upper limit and the lower limit of
a sequence of Choquet integrably bounded closed set-valued functions
(see [8]).

In this paper, we consider fuzzy number-valued functions in [19]-
[22] and will define Choquet integrals of fuzzy number-valued functions.
But these concepts of fuzzy number-valued Choquet integrals are all
based on the corresponding results of interval-valued Choquet integrals
in [5]-[8]. We also discuss their properties which are positively homo-
geneous and monotonicity of fuzzy number-valued Choquet integrals.
They will be used in the following applications : (1) Subjectively prob-
ability and expectation utility without additivity associated with fuzzy
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events as in Choquet integrable fuzzy number-valued functions, (2) Ca-
pacity measure which are presented by comonotonically additive fuzzy
number-valued functionals, and (3) Ambiguity measure related with
fuzzy number-valued fuzzy inference.

In section 2, we consider interval number-valued functions and discuss
some characterizations of interval number-valued Choquet integrals. In
section 3, we define Choquet integrals of fuzzy number-valued functions
and discuss their properties on a suitable class of fuzzy number-valued
functions. In section 4, we will prove convergence theorems for fuzzy
number-valued Choquet integrals.

2. Interval number-valued Choquet integrals

A fuzzy measure on a measurable space (X,.A) is an extended real-
valued function y : A — [0, co] satisfying

(1) u(@) =0

(i) u(A) < u(B), whenever A,B€ A, AC B.
A fuzzy measure p is said to be autocontinuous from above[resp., below]
if (AU B,) — u(A) [resp., u(A ~ B,) — p(A)] whenever A € A,
{Bn} € A and u(B,) — 0. If u is autocontinuous both from above and
from below, it is said to be autocontinuous (see [8, 13]).

DEFINITION 2.1. ([3, 10, 11, 12, 13]) (1) The Choquet integral of a
measurable function f with respect to a fuzzy measure p is defined by

© [ rau= [ " (e

where pf(r) = p({z|f(z) > r}) and the integral on the right-hand side
is an ordinary one.

(2) A measurable function f is called integrable if the Choquet inte-
gral of f can be defined and its value is finite.

Throughout this paper, R* will denote the interval [0, 00), [(R") =
{la,b] | a,b € Rt and a < b}. Then an element in I(R") is called an
interval number. On the interval number set, we define; for each pair
[a,b],[c,d] € I(R*) and k € RT,

[a,b] + [c,d] = [a+ ¢, b+ d],

[a,b] - [e,d] =[a-c,b-d],

kla,b] = [ka, kb],

[a,b] < [c,d] if and only if either a < c or (a = ¢ and b < d),
[a,b] < [e,d] if and only if [a,b] < [e,d] or [a,b] = [, d].
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Then (I(R"),dy) is a metric space, where dy is the Hausdorff metric
defined by

dg(A, B) = max{sup inf |z — y|,sup inf |z —
H(4, B) {xegy€B| yl yegweAl yl}

for all A, B € I(R"). By the definition of the Hausdorff metric, it is
easily to show that for each pair [a,d],[c,d] € I(R*),

du(la,b), [c,d]) = max{|a — ¢|,|b —d|}.

We note that < is called an order of interval numbers and that [a,b] C
[c, d] means [a,b] is a subset of [c, d].

A fuzzy number is a fuzzy set u on R¥, satisfying the following con-
ditions(see [18, 20, 21, 22]);

(i) (normality) u(z) = 0 for some, z € RY,
(ii) (fuzzy convexity) for every A € (0,1], [u]* = {z € R*|u(z) > A} €
I(R*), and
(ii1) [u]® = {z € R*|u(z) > 0} € I(RT) .

Let FF(R™) denote the set of fuzzy numbers. We define (see [18, 21, 22]);
for each pair u,v € F(R*) and k € RT,

[u+ )t = [ul* + o],

[ku])\ = k[u])\>

u < v if and only if [u]* < [v]* for all A € [0, 1],
u < v if and only if u < v and u # v,

u C v if and only if [u]* C [v]* for all X € [0, 1].
D : F(R*)x F(R") — [0,00] on F(R") by

D(u7 U) = Sup{dH([u]A’ [U])\)l)‘ € (0’ 1]}

Let C(R*) be the class of closed subsets of RT. Throughout this
paper, we consider a closed set-valued function F : X — C(R*)\{0}
and an interval number-valued function F': X — I(RT)\{#}. We denote
that dg — limp 00 An = A if and only if limy, e dg(An, A) = 0, where
A€ I(R*)and {A,} C I(R"). We also denote that D—lim,_,o A, = A
if and only if D — lim,_,e0 D(un,u) = 0, where v € F(R") and {u,} C
F(RT).

DEFINITION 2.3. ({1, 2]) A closed set-valued function F is said to be
measurable if for each open set O C R,

FHO)={r € X|F(2)NO £ 0} € A.
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DEFINITION 2.4. ([1, 2]) Let F be a closed set-valued function. A
measurable function f: X — R* satisfying

f(z) € F(z) for all x € X
is called a measurable selection of F.

We say f : X — RT is in L.(p) if and only if f is measurable and
(C) [ fdu < co. We note that “z € X p— a.e.” stands for “z € X p-
almost everywhere”. The property p(z) holds for x € X p — a.e. means
that there is a measurable set A such that u(A) = 0 and the property
p(z) holds for all z € A°, where A€ is the complement of A.

DEFINITION 2.5. ([10]-[13]) Let f, ¢ be measurable nonnegative func-
tions. We say that f and g are comonotonic, in symbols f ~ g if and
only if

f(z) < f(z') = g(z) < g(z') for all x,x’ € X.

THEOREM 2.6. ([10]-[13]) Let f, g, h be measurable functions. Then
we have

(D f~f

2)frg=9~/f

(3) f ~a for alla € RT,

(4) f~gand f~h= f~(g+h).

THEOREM 2.7. ([10]-[13]) Let f,g be nonnegative measurable func-
tions.

(1) If f < g, then (C) [ fdu < (C) [ gdp.
(2) If f ~ g and a,b € R*, then

(©) [ (ef +bo)d = a(C) [ fdu-+¥(C) [ gdu.

DEFINITION 2.8. ([5]-[8]) (1) Let F' be a closed set-valued function
and A € A. The Choquet integral of F' on A is defined by

(©) [ Pau={(©) [ faui s € 5P}
where S.(F') is the family of u — a.e. Choquet integrable selections of F,
that is,
Se(F) ={f € Le(w)| f(z) € F(z) 2 € X p—a.e}.

(2) A closed set-valued function F is said to be Choquet integrable
if (C) [ Fdp # 0.
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(3) A closed set-valued function F is said to be Choquet integrably
bounded if there is a function g € L1(u) such that
|F(z)|| = sup |r| < g(z) for all x € X.
reF(x)
Instead of (C) [y Fdp, we will write (C) [ Fdp. Let us discuss some
properties of interval-valued Choquet integrals which mean Choquet in-
tegrals of measurable interval number-valued functions.

AssuMPTION (A). For each pair f,g € S.(F), there exists h € S.(F)
such that f ~ h and (C) J gdu = (C) [ hdp.

We consider the following classes of interval number-valued functions
(see [8]);

S ={F| F:X — I(R") is measurable and Choquet
integrablybounded}

and
$1 = {F € Q| F satisfies the assumption(A)}.

ExaMPLE 2.9. We will take an example of the class &1. Let m be the
Lebesgue measure on X = [0,1] and . = m?. Tt is easily to show that u
is a fuzzy measure. We define a set-valued function F : X — C(R")
by F(z) = [0,1] for every z € X. Then, it is easily to show that
F : X — C(R") is measurable, Choquet integrably bounded, and
convex. Furthermore, for each f,g € S.(F), we can put d = (C) [ gdp.
If we define a function h : X — R* by h(z) = d for every z € X,
then h € S:(F) and (C) [ hdy = d = (C) [ gdu. We also have f ~ h.
Thus, the set-valued function F' satisfied the Assumption (A). That is,
F e $q.

THEOREM 2.10. (([5], Proposition 3.3) and ([8], Theorem 3.3)) If
F € &4, then we have

(1) ¢F € & for all c € R,

(2) F<G = (C) [ Fdu < (C) [ Gdp,

(3)ACB(A,BeA) = (O) [,Fduc (C) [z Fdu,

(4) A<B(A,Be A) = (O) [, Fdu < (C) [z Fdu,

(5) (C) [ Fdu=1(C) [ fudu, (C) [ £,
where f*(x) = sup{r|r € F(z)} and f.(z) = inf{r|r € F(z)}.

In the paper (8], we proved that f*, f. are Choquet integrable selec-
tions of F'. Now, we consider a function Ag on F; defined by

Ag(F,G) = :g@(dH(F(w),G(w))
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for all F,G € F1. Then, it is easily to show that Ag is a metric on Fi.

DEFINITION 2.11. Let F € 3. A sequence {F,} C $1 converges to
F in the metric Ag, in symbols, F;, —a F if

lim Ag(F,, F)=0.
n—oo

THEOREM 2.12. ([8], Theorem 3.5) Let F,G,H € < and {F,} be a
sequence in 1. If a fuzzy measure p. is autocontinuous and if F, — Ao F
and G < F, < H, then we have

di — lim (C) / Fody = (C) / Fdy.

3. Fuzzy number-valued Choquet integrals

In this section, we will define various concepts associated with fuzzy
number-valued Choquet integral which is the Choquet integral of a fuzzy
number-valued function.

DEFINITION 3.1. (1) A fuzzy number-valued function F' is said to
be measurable if for each A € [0, 1], the interval number-valued function
F>: X — F(R*)\ {0}, defined by F*(z) = [F(x)]* is measurable.

(2) F is called Choquet integrably bounded if F° is Choquet inte-
grably bounded.

DEFINITION 3.2. (1) Let F' be a fuzzy number-valued function and
A € A. The Choquet integral of F on A is defined by for each X € [0, 1],

(© [ Fa = (© [ Pau
= {(C) /A fdmfesc<F*)}.

(2) If there exists u € F(RT) such that [u]* = [, F*du, A € [0,1],
then F is called Choquet integrable on A. Write u = (C) [, Fdp.

LemMA 3.3. ([18], Lemma 2.1) If {[a*, *]|A € [0, 1]} is a given family
of nonempty interval numbers of . If (1) for all 0 < A1 < Ao, [a’\l,b’\l] D
[a*2,b*2] and (2) for any nonincreasing sequence {)\} in [0,1] in con-
verging to A, [a*,b"] = N [a**, b ] . Then there exists a unique fuzzy
number u € F(R*) such that the family [a*,b"] represents the A-level
sets of u.

Conversely, if [a’\,bA] are the A-level sets of a fuzzy number u €
F(R™), then the conditions (1) and (2) are satisfied.
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We denote the following classes of fuzzy number-valued functions :
S={F: X ->FR)|FAexec01]}
and
S ={FeS|F e, e|0,1]}
THEOREM 3.4. If F : X — F(R") is measurable and Choquet
integrably bounded, F € .

Proof. By measurability of F, F*» : X — I(R") is measur-
able. Since F' is Choquet integrably bounded, F° is Choquet integrably
bounded. Thus there exists h € L.(y) such that

|1FO(x)[| < h(z), ¥z € X.
We note that [F(z)]* C [F(z)]° for all A € [0,1]. So, we have
[FM=)|] < h(z), Yz € X.

That is, F* is Choquet integrably bounded for all A € [0,1]. Thus we
have F* € & and hence F € Q. O

THEOREM 3.5. Let F € $ and F™(z) = sup{r|r € F*xz)} and
fMz) = inf{r|r € FNx)} for all x € X. If we denote

W = [(C) / Ay, (C) / Py for all A € [0,1],

then we have

(1) for all A1, Ay with 0 < A\ < Ag, M D w2 and

(2) for any nondecreasing sequence {\;} in [0,1] converging to A,
u = ﬂz"_lu’\k.

Proof. (1) Let Ay, Az with 0 < A; < A, Since Fi(z) D F*2(z) for

all z € X, f0(z) < f2(x) and fA*(z) > f**(z) for all z € X. By
Theorem 2.7 (1),

(C) / fidu < (C) / f22dy and (C) / fM*dp > (C) / Py,
Thus we have

M= [(0) / Py, (C) / Frdy)
> [(©) / f2dp, (C) / Py = .
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(2) Let {Ax} be any nonincreasing sequence in [0, 1] converging to A.
So, we have f** N\, f** and f* / f}. Thus, by Proposition 3.2 [10],

G (€) [ Prrdu=(©) [ £ and im (©) [ £du=(©) [ an
Therefore, we have
M = E(0) [ £ (©) [
— up(C) [ P int(©) [ P
= [im (©) [ R Jim (€) [ £a
= (©) [ 4w (© [ du
’LL)‘.

O

COROLLARY 3.6. If F € &1, then there exists a unique fuzzy number
u € F(RY) such that

u = (C) / FAdy for all A € [0,1].

Proof. Theorem 3.5 implies that assumptions (1) and (2) of Lemma
3.3 hold. Thus by Lemma 3.3, there exists a unique fuzzy number u €
F(R*) such that the family (C) [ F*du represents the A-level sets of u,
that is,

@ =[(C) / Fd* = (C) / P
O

We remark that for all F € &y, F is Choquet integrable and that
F <G if and only if F(z) < G(z) for all z € X (see [22]).

THEOREM 3.7. (1) If F' € Sy and ¢ € RY, then cF € &1 and
(C)/ch,uzc(C)/qu.

(2) If F,G € $1 and F < G, then (C) [ Fdpu < (C) [ Gdp .
(3) If F € §) and A < B(A, B € A), then (C) [, Fdu < (C) [z Fdp.
(4) If F € $1 and A C B(A,B € A), then (C) [, Fdu C (C) [5 Fdp.
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Proof. (1) It is easily to show that ¢F € &y. Theorems 2.7(2) and

2.10(5) imply that for each A € [0, 1],

(©) / cFdg = (C) / (cF)dp

= (C)/CF’\dy,

= (©) [ eflau (©) [ er*au
= <(©) [ £2du,(C) [ £*au

— <) [ Fau
— <l(©) [ Fau.

Thus we have (C) [ cFdu = ¢(C) [ Fdu.
(2) Since F < G, FA < G* for all A € [0,1] . By Theorem 2.10(2),

(©) [ Fau

<

for all A € [0,1]. Therefore, (C) [ Fdu < (C) [ Gdu.
(3) By Theorem 2.10(3) and (4), we have

and

() /A Fy]

(©) /A Fdu®
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- (©) /B Fdu],

for all A € [0,1].

4. The convergence theorem for fuzzy number-valued Cho-
quet integrals

In this section, our aim is to prove the convergence theorem for fuzzy
number-valued Choquet integrals. To this end, we introduce a metric in
F(R*) (see [9, 15, 16]) and define a metric in .

Let u,v € F(R*), and set

D(u,v) = sup dg(ut,v).
A€E(0,1]
Then, by Proposition 4.1 ([15]), we have (F(R"), D) is a metric space.
Using this definition, clearly, we can define a metric Dg in Q3.

DEFINITION 4.1. A function Dg : $) x 8y — [0, 00] is defined by

Ds(F,G) = sup D(F(z), G(z)),
zeX

for all F,G € 3.
Then we have a relation between Dg and Ag.

THEOREM 4.2 Let F,G € S, and Dg and Ag be as in the above.
Then we have

Dg(F,G) = sup As(FY,GY).
A€(0,1)

Proof.
Ds(F,G) = sup D(F(x),G(x))
rz€eX
= sup sup dy(Fz),G*(x))
z€X Ae(0,1)
= sup supdy(F(z),G*(z))
AE(0,1] z€X

= sup Ag(F)G).
A€(0,1]
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DEFINITION 4.3. Let F € $;. A sequence {F,} C & converges to
F in the metric Dg, in symbols F,, —»p, F'if

lim Dg(F,, F) =0.
i ande ¢l

Using Theorem 4.2 and Definition 4.3, we obtain the following con-
vergence theorem for fuzzy number-valued functions.

THEOREM 4.4. Let F,G, H € &, and {F,} be a sequence in . Ifa
fuzzy measure pu is autocontinuous and if F, —ps F and G < F,, < H,
then we have

D — lim (C)/Fndu: (C)/Fd,u.

n—oo

Proof. Since F,, —p, F and G < F, < H, F, —a, F* and
G* < F,> < H? for all A € ((0,1]. By Theorem 2.12,
lim dg((C) / F dy, (C) / FAdp) = 0.

n—Co0

Thus, if ¢ > 0 is fixed, then there exists a natural number Ny such

that
0) [ Fdu,ic) [ Paw <,
for all n > Ny and for all A € (0,1]. Thus,

C)/ F Ny, (C /deu)

—  sup du((C) / F dp, (C) / FAdy)

A€(0,1]
< g,

for all n > Ny. Therefore, the proof is complete. Od
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