Bull. Korean Math. Soc. 41 (2004), No. 1, pp. 109-116

ON THE UNIQUENESS OF ENTIRE FUNCTIONS

HUILING QIU AND MINGLIANG FANG

ABSTRACT. In this paper, we study the uniqueness of entire func-
tions and prove the following result: Let f(z) and g(z) be two
nonconstant entire functions, n > 7 a positive integer, and let a
be a nonzero finite complex number. If f*(2)(f(z) — 1)f'(z) and
g™ (2)(g(z) — 1)g'(2) share a CM, then f(z) = g(z). The result
improves the theorem due to ref. [3].

1. Introduction and notations

Let f(z) be a nonconstant meromorphic function in the whole com-
plex plane. We use the following standard notation of value distribution
theory,

T(r, f),m(r, f),N(r, £), N(r, f), -+
(see Hayman [1], Yang [2]). We denote by S(r, f) any function satisfying

S(r, f) = o{T(r, )},
as 7 — 00, possibly outside of a set with finite measure.
Let a be a finite complex number. We denote by Nk)(r, =) the

E)unting function for zeros of f(z)—a with multiplicity at most k and by
Ny (r, 7o a) the corresponding one for which multiplicity is not counted.

Let N(r, 7 ) be the countlng function for zeros of f(z) —a with mul-
tiplicity at least kand N (k( ) f —) the corresponding one for Wthh mul-
tiplicity is not counted. Set Ny(r ,f_a): N(r o - a)—f—N(z( )+ -+
N i(r, ﬁ) We define

_ N2(T7f_1a)
bafa, f) =1~ rll»rgo_—T—(—T—‘—__-f_)_—.
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Let g(z) be a meromorphic function, a be a complex number. If
f(2) —a and g(z) — a have the same zeros with the same multiplicities,
then we say that f(2) and g(z) share a CM.

In [3], Fang and Hong proved

THEOREM A. Let f(z) and g(z) be two nonconstant entire functions,
n > 11 be a positive integer, a be a nonzero finite complex number. If

fE‘()Z)(f(Z) —1)f'(2) and g"(2)(g(2) — 1)¢'(2) share a CM, then f(z) =
g9(z).

In this paper, using different method from [3], we have proved that
Theorem A remains valid for n > 7.

THEOREM 1. Let f(z) and g(z) be two nonconstant entire functions,
n > 7 be a positive integer, a be a nonzero finite complex number. If

f:()z)(f(Z) —1)f'(2) and g"(2)(g(2) — 1) (2) share a CM, then f(z) =
g(z).

2. Some lemmas

For the proof of Theorem 1 we need the following lemmas.
LeEMMA 1 ([4]). Let f(z) be a meromorphic function. Then
T(r,anf™ + ana1 f* 1+ +a1f +ao) = nT(r, f) + S(r, f).
Here a,(#0), ap—1, -+, ag are constants.

LEMMA 2 ([5, 6]). Let fi(z) (j = 1,2,---,p) be linearly independent
meromorphic functions, p a positive integer. If

P
> fil) =
j=1

thenfor1 < j<p

T(r, f;) < ZN )+ N(r, f;) + N(r, W)

fz
— ZN(T fi) = N(r i) + 8(r)
Z—l 1 J 2 b W ?

where W(f1, f2, -+, fp) is the Wronskian determinant of f;(z) (j =

1,2,---,p),
S(r) = o(T(r)), (r — oo, ¢ E).
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Here

T(r) = max{T(r, f;)},

and F is a set of finite measure.
By Lemma 2 we can easily obtain

LEmMA 3. Let fj(z) ( = 1,2,--- ,p) be linearly independent tran-
scendental entire functions, p a positive integer. If

p
> fil2) =
j=1
then for 1 <j<p
P
T(r, ;) sz +S()

Here S(r) is the same as in Lemma 2.

LEMMA 4. Let fj(2)(j = 1,2,3) be transcendental entire functions.
If f1(z) + fa(2) + f3(2) = 1, then

62(0, f1) + 62(0, f2) + 62(0, f3) < 2

N. 1
Here 65(0, fj) = 1— 11mr_,00ijj)— (1=1,2,3).

Proof. We consider two cases.
Case 1. f1, f2, f3 are linearly independent functions. Then by lemma
3 we have

3 3
T(r, f;) SZ Z (1 —02(0, f)) T(r, fi) + S(r).
=1 i=1
Thus we obtain
3
r) <) (1 =50, fi)) T(r) + S(r).
=1

That is

3
(Z ©, f) —2) T(r) < S(r).

Hence we get

3
(2.1) > 8&(0.5;) <2

i=1
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Case 2. fi, f2, f3 are linearly dependent functions. Without loss of
generality, we assume that f1, fo are linearly independent functions and
that f3 = c1f1 + cofo, where ¢1, ¢y are constants. Hence we have

(1 +e)fi(z) + 1+ ea)faz) = 1.

Obviously 1+ ¢; # 0,1 4+ c2 # 0. Then by the same argument as do in
case 1 we obtain

©(0, f1) +©(0, f2) < 1.
Considering ©(0, fi) > §2(0, f;) (i = 1,2) we obtain

3
(2.2) > 6200, £:) < O(0, f1) + O(0, f2) + 62(0, f3) < 2.
i=1

The proof of the lemma is complete. 0

3. Proof of Theorem 1

By the assumption of the theorem we know that either both f and
g are two transcendental entire functions or both f and g are two poly-
nomials.

We first assume that both f and g are transcendental entire functions.
Then by the assumption of the theorem we have

P =Df —a _ 4
n ! =€

g (g—1)g —a

where h(z) is an entire function. Thus we obtain

fMF=1f  rgn(g-1)g

a a

(3.1)

1

(3.2) +eM?) =1,
We claim that either ﬁ%(—g—im—’ or e™M?) is not a transcendental func-

. h(z) nf 4 ’
tion. Suppose that both E—Q—ég—ﬁ and e"(?) are transcendental func-

tions. Then we have

1
N (’”’ f”(f—l)f'>

B3 SN+ NG ) + NG ) + 50 )
2 1 1 1
< E (TLN(’I‘,?)-FN(T,f_1)+N(T7'fT/))
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2 1
+ (=2 (Nin

¥ (r 77 w7)

)+ NG f,>) LS ).

1
(3.4) :N(r,——————fn(f_l)f)+5(r f)
1
:nN(r,?)+N( = )+N(7" ?)‘FS(”‘JC)

By Lemma 1 we have
(n+ VT (r, f) = T(r, f*(f = 1)) + S(r, f)
<76, 00 v, 2y 4 st )

<1, 00 1y 4 s, ),

thus we have

(3.5) nT(r, f) < T(r, ﬂ%gﬂ) + S(r, f).
By Lemma 1 and (3.5) we have
1 1
N(r, = 1)—I—N(r —f7)
36) < NO )T ?1—,)-1-5(7“ f)

2, ffE=0f
=)+ 5(n f).

< 2T(r, f) + S(r. f) < =T,

Hence by (3.3)-(3.6) we obtain

1 dn—4_  fMf-1f U -0f
N2(r’ f“(f—l)f’ ) S TL2 T(r, a ) + S(’/‘, a )
a
Considering n > 7 we get
1
. Na(r, NS A ) dn—4 24
lim = <

rooo Ty, LUy = n? T 49

Thus we have

f”(f—l)f') 1__23 25
a - 49  49°

52(07

113
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Likewise, we have

Obviously,
82(0,e"2)y = 1,

Thus we have

n _ ! (2) gn — /
52(0,1%—%)+52(o,—6h g Elg 1)g)+52(0,eh(z))>2.

On the other hand, by Lemma 4 we have

o I"=1f _Mgn(g — 1)
! a a

)+ 62(0,eM?)y < 2.

G2 ( ) + 62(0,

. . h(z) gn (g—1)q’
Thus we get a contradiction. Hence we prove that either e——g%&

or e"(?) is not a transcendental function. Next we consider two cases.

eh@gn(g-1)g’ . . .
Case 1. ——_ " isnot a transcendental function. In this case

; A g (g-1)g' _ -
we can easily obtain that —=—%-9==% = 1. Hence we get g"(g—1)¢' =

——nty- Thus by (3.2) we deduce that f*(f —1)f' = —ae™?) which is a
contradiction.

Case 2. M%) is not a transcendental function. In this case we
can also easily obtain that e"*) = 1. By (3.2) we get f*(f — 1)f =
g"(g — 1)g, that is

n+2 gn+1

(fn+2 fn+1 )/ _ (g )/

n+2 n+1 n+2 n+1""
Hence we obtain

fr+2 - L g2 gnHl

(3.7) +c,

n+2 n+1 n+2 n+l

where ¢ is a constant.
We claim that ¢ = 0. If ¢ # 0, then by Lemma 1 and n > 7 we have

fn+2 fn—H fn+2 fn+1

iU e ey DAL G learay fetbenra )

_ fn+2 fn-{-l gn+2 gn+1

_@mwr+2 n+¢)+6er+2 n+1)
2 2n 14

> 2(1— = >_">1

2 - ) =5 25> h
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which contradicts ©(0, FAS ke + O(¢, t— — £—) < 1. Thus we
n+2 n+1
deduce that

n+2 +1
g g"

n+2 n+l1 n+2 n+l
Let f/g=h. If h #1, then by (3.8) we have

_ (n+ QA +ht+RY
T (n+ 1A+ R+ ALY

Thus we deduce by Picard’s theorem that h(z) is a constant. Hence g
is a constant, a contradiction. Therefore we deduce that h(z) = 1, that
is f(2) = g(2).

Next we assume that both f and g are two polynomials. Then by
fM(f — 1) f and g"(g — 1)g’ share a CM we have

(3.9) M2 (f(2) = D f(2) —a=klg"(2)(9(2) — 1)g'(2) — d],
where £ is a constant.

Thus by (3.9) and n > 7 we deduce that there exists zp such that
f(20) = g(20) = 0. Substituting this into (3.9) we get k = 1, that is

f2)(f(z) = V) f'(z) = g"(2)(g9(z) — 1)g'(2). In the following by using
the same argument as do in case 2 we get f(z) = g(z). O

(3‘8> fn+2 B fn+1
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